2. КОНТРОЛЬНОЕ ЗАДАНИЕ
Разработать преобразователь кода по схеме дешифратор-шифратор с шифратором, выполненным по матричной диодной схеме, для преобразования входной функции, заданной табл.3, в соответствующие им выходные при условии, что входные функции заданы - двоичным четырехразрядным кодом, выходные – двоичным пятиразрядным кодом. Диапазон изменения параметра X составляет (0...1)/2 с дискретностью 0,1. Параллельный код преобразовать в последовательный, направив его в линию связи с волновым сопротивлением 50 Ом.
МЕТОДИКА ВЫПОЛНЕНИЯ ЗАДАНИЯ
1. В соответствии с двумя последними цифрами зачетной книжки выбирается номер варианта и выполняется входная и выходная функции разрабатываемого устройства
Таблица 3
№ | Вход | Выход | № | Вход | Выход |
1 | sin х | х | 15 | 1- sin х | 0.9 х |
2 | cos х | х | 16 | 1-cos2 х | х |
3 | 1 - sin х | 0,8 x | 17 | х sin х | sin х |
4 | 1 - cos х | 0,8 x | 18 | х cos х | cos х |
5 | sin х | x2 | 19 | х(1- sin х) | х |
6 | cos х | x2 | 20 | X (1 - cos х) | х |
7 | 1- sin лх | x2 | 21 | х (1- sin х) 2 | sin x |
8 | 1- cos х | x2 | 22 | х (1 - cos х)2 | cos x |
9 | (1- sin х)2 | 0,5 x | 23 | х (1 - cos х)1/2 | х |
10 | (1- cos х)2 | х | 24 | Х(1 - sin х) 1/2 | х |
11 | (l-sin x)1/2 | х | 25 | х(1 - sin х) 1/2 | sin x |
12 | (1- cos х ) 1/2 | х | 26 | х (1- cos х) 1/2 | cos x |
13 | sin2х | х | 27 | 1- х sin х | 1- х cos х |
14 | cos2х | 0,4 x | 28 | sin х | cos х |
2. Определяются дискретные значения входной функции при равномерной дискретизация с шагом 0,1 при изменении X от 0 до 1. Полученные данные переводят в двоичный четырех разрядный код. Для этого каждое из полученных дискретных значений функции умножают на число (24 - 1), результат округляют до ближайшего целого десятичного числа, которое и записывают в двоичном четырехразрядном коде. Результаты сводятся в таблицу. В качестве примера рассмотрен вариант 28. Здесь в строке I -указаны значения X, в строке 2 - х , в строке 3 - sin х в десятичном коде, в строке 4 - (2 -1) sin тех - . значения преобразуемой функции sin тех в десятичном коде с учетом разрядности входного десятичного кода, в строке 5 (2 -1) sin тех. округленное до ближайшего целого входной функции в десятичном коде, в строке 6 – двоичный четырехразрядный код преобразуемой функции.
3. Определяют дискретные значения выходной функции при тех же значениях и по той же методике с учетом того, что выходная Функция записывается в двоичном пятиразрядном коде Результаты свидятся а таблицу. Для перевода функции cosnx в двоичный пятиразрядный код используется коэффициент (2s -1).
4. Строится схема преобразователя кодов. Для этого используется дешифратор 4x16, выходные шины 0 .. 15, которого с помощью диодов соединены с пятью выходными шинами шифратора в соответствии с полученными в результате выполнения пунктов 2 и 3, кодами выходной и входной функций. При этом двоичный четырехразрядный код входной функции на каждом из наборов определяет номер выходной шины шифратора, а соответствующий ему двоичный пятиразрядный код – узлы соединения этой выходной шины с соответствующей разрядной выходной шиной шифратора. Соединения выходной шины дешифратора и выходных шин шифратору осуществляются с помощью диодов только в тех разрядах, где код выходного пятиразрядного двоичного числа равен единице. Схема ПК для рассматриваемого примера строится аналогично рассмотренному преобразователю (рис 6).
В случае, если одному и тому же входному коду соответствуют различные выходные коды, следует взять одно из значений выходною кода.
Преобразование параллельного кода в последовательный возможно с помощью регистра либо мультиплексора. В первом случае код записывается в регистр по команде параллельной записи. Затем на управляющий вход RG подаются такты сдвига, под действием которых код сдвигается и в последовательном виде появляется на выходе старшего разряда Регистр следует выбрать такой, чтобы в него можно было записать 5 разрядов, например, К531ИР24 или два ИР1. Команда записи и импульсы сдвига формируются специальным генератором (генератор можно не разрабатывать).
Во втором случае параллельный код подается на информационные входы мультиплексора (входы D (рис. 7)). На адресные входы (А, В, С) подаст двоичный код, формируемый, например, с помощью двоичного счетчика, запускаемого генератором тактов. Преобразование возможно как со стороны младшего разряда, так и со стороны старшего.
№ | Характер | Дискретные значения преобразуемых функций | ||||||||||
1 | x | 0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 0,1 |
2 | [x] | 0 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
3 | sinx | 0 | 0,16 | 0,31 | 0,45 | 0,59 | 0,71 | 0,81 | 0,89 | 0,95 | 0,99 | 1,0 |
4 | (24-1)sinx | 0 | 2,5 | 4,65 | 6,75 | 8,85 | 10,7 | 13,2 | 13,4 | 14,3 | 14,8 | 15,0 |
5 | [(24-1)sinx] | 0 | 3 | 6,75 | 7 | 7 | 9 | 11 | 12 | 13 | 14 | 15 |
6 | двоичный код [(24-1)sinx] | 0000 | 0011 | 0110 | 0111 | 1001 | 1011 | 1100 | 1101 | 1110 | 1111 | 1111 |
№ | Характер | Дискретные значения преобразуемых функций | ||||||||||
1 | x | 0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 0,1 |
2 | [x] | 0 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
3 | sinx | 1,0 | 0,98 | 0,95 | 0,88 | 0,80 | 0,71 | 0,57 | 0,44 | 0,29 | 0,14 | 0 |
4 | (24-1)sinx | 31 | 30,4 | 29,7 | 27,4 | 24,8 | 22 | 17,7 | 13,7 | 9,0 | 4,3 | 0 |
5 | [(24-1)sinx] | 31 | 30 | 30 | 27 | 25 | 22 | 18 | 14 | 9 | 4 | 0 |
6 | двоичный код [(24-1)sinx] | 11111 | 11110 | 11110 | 11011 | 11001 | 10110 | 10010 | 01110 | 01001 | 00100 | 00000 |
В обоих случаях для согласования преобразователя с линией связи ставится формирователь импульсов, имеющий выходное сопротивление 50 Ом. Этот формирователь подключается к выходу F или F мультиплексора (рис. 7) или к старшему выходу регистра. Формирователь может быть сделан как на отдельных дискретных элементах – ключах на транзисторах, так и на основе специальных логических схем – линейных формирователях типа К155ЛЕ2.
Примечание. В указаниях приведены микросхемы 155 серии. Задание можно выполнять на любой серии микросхем.
Генераторы тактовых и управляющих импульсов можно не разрабатывать и не приводить на принципиальной схеме. Но необходимо указать на временной диаграмме последовательность действия этих импульсов.
Студенты, знакомые с микропроцессором, могут выполнить данное задание на каком-либо микропроцессорном комплекте. В этом случае в отчете следует представить программу преобразования непрерывной функции в код, увеличив число точек отсчета, программу управления выходным портом. На принципиальной схеме представить микропроцессор с указанием всех задействованных выходов; преобразователь параллельного кода в последовательный, линейный формирователь. Принципиальная схема должна сопровождаться кратким описанием ее работы.
3. ЗАДАНИЕ НА ИССЛЕДОВАНИЕ
Исследовать работу предложенных шифраторов, дешифраторов, мультиплексоров, демультиплексоров и преобразователей кодов.
ОФОРМЛЕНИЕ ОТЧЕТОВ
В отчете необходимо представить схемы исследованных элементов и временные диаграммы, а также номер варианта, таблицы преобразования, таблицу функционирования кодопреобразователя, принципиальную схему преобразователя с описанием его работы. Принципиальная схема должна быть оформлена с соблюдением требований ЕСКД. В конце отчета указывается список литературы.
1. Аналоговые и цифровые интегральные микросхемы / Под ред. С.В.Якубовского. М: Радио и связь, 1997. 432 с.
2. Гусев В.Г., Гусев Ю.М Электроника. М.: Высш. шк., 1996. 490 с. ил.
3. Калиш Г.Г. Основы вычислительной техники М.: Высш. шк., 2000.-271 с: ил.
4. Шило В.И. Популярные цифровые микросхемы. М: Радио и связь, 1998. 320 с: ил.
5. Каган Б.М., Сташин В.В. Основы проектирования микропроцессорных устройств автоматики. М.: Энергоатомиздат, 1997.
6. Каган Б.М. Электронные вычислительные машины и системы 3 изд. М.: Энергоатомиздат, 1991.
7. Мокрецов В.Д. Комбинационные схемы в МП системах: Учебное пособие. Свердловск: УПИ, 1999. 97 с: ил.
8. Применение ИМС в электронной вычислительной технике: Справочник Под ред. Б.Н.Файзулаева. Радио и связь, 1997, 476с: ил.
9. Цифровые и аналоговые интегральные микросхемы: справочник под ред. СВ. Якубовского М.: Радио и связь, 1994
ПРИЛОЖЕНИЕ
Цоколевка некоторых микросхем
К155ИДЗ
Дешифратор – демультиплексор 4 линии на 16.
Назначение выводов: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17 – выходы Yl, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Yll, Y12, Y13, Y14, Y15, Y16; 12 – общий; 18, 19 – стробирующие входы XI, Х2; 20,21,22,23 – информационные входы Х6, Х5, Х4, ХЗ; 24 – напряжение питания.
К155ИД4
Сдвоенный дешифратор – демультиплексор 2-4.
Назначение выводов: 1 – вход информационный, 2 – стробирующий вход, 3, 13 – адресный вход, 4, 5, 6, 7, 9, 10, 11, 12 – выходы, 8 – общий, 14 – стробирующий (инверсный) вход, 15 – вход информационный (инверсный), 14 –напряжение питания
К155КП7Селектор — мультиплексор данных на 8 каналов со стробированием.
Назначение выводов: 1, 2, 3, 4, 7, 9, 10, 11, 12, 13, 14, 15 – входы; 5, 6 – выходы; 8 – общий; 16 – напряжение питания.
К155ИР13
Четырехразрядный универсальный сдвиговый регистр.
1 – вход режимный S0; 2 – вход последовательного ввода информации при сдвиге вправо DR; 3 – вход информационный D0; 4 – выход Q0; 5 – вход D1; 6 – выход Q1; 7 – вход D2; 8 – выход Q2; 9 – вход D3; 10 – выход Q3; 11 – вход синхронизации С; 12 – общий; 13 – вход инверсный "сброс" R; 14 – выход Q4; 15 – вход D4; 16 – выход Q5; 17 – вход D5; 18 – выход Q6; 19 – вход D6; 20 – выход Q7; 21 – вход D7; 22 – вход последовательного ввода информации при сдвиге влево DL; 23 – вход режимный S1; 24 – напряжение питания;
К155ИВ1
Приоритетный шифратор 8 каналов в 3.
1 – вход X4; 2 – вход X5; 3 – вход X6; 4 – вход X7; 5 – вход E; 6 – выход A2; 7 – выход A1; 8 – общий; 9 – выход A0; 10 – вход X0; 11 – вход X1; 12 – вход X2; 13 – вход X3; 14 – выход GS; 15 – выход E; 16 – напряжение питания;
К155ИД1
Двоично-десятичный дешифратор с высоковольтным выходом.
1 – выход V8; 2 – выход V9; 3 – вход X1; 4 – вход X4; 5 – напряжение питания (+Uп ); 6 – вход X2; 7 – вход X3; 8 – выход V2; 9 – выход V3; 10 – выход V7; 11 – выход V5; 12 – общий; 13 – выход V4; 14 – выход V5; 15 – выход V1; 16 – выход V0;
К155КП2
Сдвоенный цифровой селектор-мультиплексор 4-1.
1 – вход разрешения V1; 2 – вход выборки разряда S2; 3 – вход информационный A3; 4 – вход информационный A2; 5 – вход информационный A1; 6 – вход информационный A0; 7 – выход A; 8 – общий; 9 – выход D; 10 – вход информационный D0; 11 – вход информационный D1; 12 – вход информационный D2; 13 – вход информационный D3; 14 – вход выборки разряда S1; 15 – вход разрешения V2; 16 – напряжение питания;
К155КП5
Селектор-мультиплексор данных на 8 каналов.
1 – вход X5; 2 – вход X4; 3 – вход X3; 4 – вход X2; 5 – вход X1; 6 – выход Y; 7 – общий; 8 – вход X11; 9 – вход X10; 10 – вход X9; 11 – вход X8; 12 – вход X7; 13 – вход X6; 14 – напряжение питания;
К155ИР1
Четырехразрядный универсальный сдвиговый регистр.
1 – информационный вход V1; 2 – в ход первого разряда D1; 3 – вход второго разряда D2; 4 – вход третьего разряда D3; 5 – вход четвертого разряда D4; 6 – вход выбора режима V2; 7 – общий; 8 – вход синхронизации C2; 9 – вход синхронизации C1; 10 – выход четвертого разряда; 11 – выход третьего разряда; 12 – выход второго разряда; 13 – выход первого разряда; 14 – напряжение питания;
К155ИР15
Регистр четырехразрядный с тремя состояниями выхода.
1 – управление выходами V1; 2 – управление выходами V2; 3 – выход первого разряда Q1; 4 – выход второго разряда Q2; 5 – выход третьего разряда Q3; 6 – выход четвертого разряда Q4; 7 – вход синхронизации C; 8 – общий; 9 – разрешение данных V3; 10 – разрешение данных V4; 11 – вход четвертого разряда D4; 12 – вход третьего разряда D3; 13 – вход второго разряда D2; 14 – вход первого разряда D1; 15 – вход установки нуля; 16 – напряжение питания;
К155КП7
Селектор-мультиплексор на восемь каналов со стробированием
1-4 – входы информационные D3-D1; 5 – выход Y1; 6 – выход Y2; 7 – вход разрешения; 8 – общий; 9 – вход C; 10 – вход B; 11 – вход A; 12-15 – входы информационные D7-D4; 16 – напряжение питания;
К155ИР17
Четырехразрядный универсальный сдвиговый регистр.
1 – инверсный вход Е (разрешение); 2 – выход J0; 3 – инверсный выход С (завершение преобразования); 4 – выход Q0; 5 – выход Q1; 6 – выход Q2; 7 – выход Q3; 8 – выход Q4; 9 – выход Q5; 10,15,22 – свободные; 11 – вход данных D; 12 – общий; 13 – вход С (тактовый); 14 – инверсный вход S (пуск); 16 – выход Q6; 17 – выход Q7; 18 – выход Q8; 19 – выход Q9; 20 – выход Q10; 21 – выход Q11; 23 – инверсный выход Q11; 24 – напряжение питания;
... шумы анализатора), называют динамическим диапазоном по комбинационным помехам . Динамический диапазон по комбинационным помехам в анализаторах спектра миллиметрового диапазона волн в основном определяются КВЧ преобразователями входных сигналов. Исторически на начальных этапах освоения мм диапазона длин волн предпочтение отдавалось гармониковым преобразователям частоты и анализаторам ...
... D=1- W3W4(W1W5W6+ W7+ W1W8+ W2W6 W7+ W2W7+2W2W8+ 1)+ W5W6(W3W4(W7+ W1W5W6+ W2W7+ W2W8+1)-1) Для x1 Для x4 Для y Для х13 Задание 2. Синтез комбинационных схем. 2.1 Определение поставленной задачи Устройство, работа которого может быть представлена на языке алгебры высказываний, принято называть логическим. Пусть такое устройство имеет n ...
... в народном хозяйстве. Специальная часть. 3. 1. Определение задачи. Из задания на курсовое проектирование определим суть задачи: для некоторого синхронного цифрового автомата необходимо спроектировать устройство управления на основе жёсткой логики, которое в соответствии с заданными кодами микрокоманд формирует на выходной десятиразрядной шине управляющую последовательность цифровых сигналов. 3. ...
... показана на рисунке 8.4 Величина резистора R выбирается из условия [12] 240 Ом < R < 1,5 кОм.(8.5) Рисунок 8.4 Период генерируемых импульсов (8.6) 9. ФУНКЦИОНАЛЬНЫЕ УСТРОЙСТВА КОМПЬЮТЕРНОЙ (ЦИФРОВОЙ) ЭЛЕКТРОНИКИ 9.1 Комбинационные цифровые устройства (КЦУ) Логические устройства, выходные сигналы которых однозначно определяются комбинацией входных логических ...
0 комментариев