3. Орбітальний механічний момент імпульсу атома дорівнює геометричній (векторною) сумі орбітальних моментів всіх електронів атома:, Z – число електронів.
4. Орбітальний магнітний момент імпульсу атома дорівнює геометричній (векторною) сумі магнітних моментів всіх електронів атома:. Вочевидь, що зберігається співвідношення
Тепер розглянемо електронні і атомні моменти з точки зору квантової механіки. Хронологічно першими експериментами по вивченню магнітних моментів атома, що виявляються в магнітних полях, були досліди П. Зєємана (1896 г). Було виявлено, що якщо помістити джерело світла (електромагнітного випромінювання) між полюсами електромагніту, то спектральні лінії джерела розщеплюються на декілька компонент. Явище розщеплювання спектральних ліній, а отже і енергетичних рівнів, переходи між якими забезпечують випромінювання, в зовнішньому магнітному полі отримало назву ефекту Зеемана. Розрізняють нормальний і аномальний ефекти Зеемана.
Нормальний ефект Зеемана спостерігається в сильних магнітних полях.
При приміщенні джерела випромінювання з частотою н0 (л0) в магнітне поле, направлене паралельно напряму поширення випромінювання, спостерігається випромінювання з двома симетричними відносно початкової н0 частотами: н-1 і н+1. Випромінювання з початковою частотою н0 при цьому не відбувається:.
Якщо досліджуване випромінювання поширюється перпендикулярно вектору магнітного поля, то випромінювання з н0 симетрично розщеплюється на три компоненты: н-1, н0 і н+1.
Нормальний ефект Зеемана був пояснений Лоренцем по класичній електронній теорії. У зовнішньому магнітному полі вектори і електрона в атомі обертаються (процесують) з кутовою швидкістю, якою відповідає частота. Тут – напруженість зовнішнього магнітного поля связанна з вектором магнітної індукції співвідношенням. При цьому вектори і описують співісні конічні поверхні із загальною вершиною в центрі орбіти і остюком, паралельним вектору. Такий рух векторів і моментів електрона і відповідної електронної орбіти в атомі в зовнішньому магнітному полі називається прецессией Лармора.
Різниця частот між спектральними лініями при нормальному ефекті Зеемана опинилася рівною якраз Ларморової частоті Дн = н+1.– н0 = н0 – н-1.
Величина називається магнетоном Бору і позначається, тоді можна записати, чтоДн =. С.313 Детлаф РИС
Аномальний ефект Зеемана спостерігається в слабких магнітних полях і полягає в розщеплюванні кожної спектральної лінії випромінювання на безліч компонент.
При цьому зовнішнє магнітне поле вважається слабким, якщо взаємодія між орбітальним і магнітним моментами електрона в атомі сильніше, ніж взаємодія кожного з цих моментів або із зовнішнім магнітним полем. Тому саме аномальний ефект Зеемана виявляє взаємодію між власними внутрішніми моментами електрона в атомі. Із збільшенням напруженості магнітного поля взаємодія між внутрішніми моментами електрона стає все менш істотною в порівнянні з їх взаємодією із зовнішнім магнітним полем. Розщеплювання спектральних ліній при цьому зростає, сусідні лінії поступово починають зливатися, і залишається 2 або 3 частоти випромінювання залежно від взаємного напряму магнітного поля і випромінювання.
Звичайний простий виклад виходить в тих випадках, коли обговорюваному явищу удається знайти аналог в повсякденному житті. Для безвідрадзної луні таким аналогом може служити наступний приклад. Уявимо собі забіг на довгу дистанцію. Відразу після старту всі бігуни біжать щільною купою, тобто мають, кажучи по-науковому, близькі значення просторових координат. Проте з часом найбільш треновані бігуни підуть вперед, а аматори порушувати спортивний режим відстануть, і відмінності в їх координатах стануть помітними. Але тут з'ясовується, що старт був дан не в ту сторону. Слідує команда “круг”, після якої бігуни продовжать свою дорогу в протилежному напрямі, так що найбільш швидкі з них виявляться в положенні тих, що доганяють. Допустимо, що співвідношення швидкостей учасників забігу після такої команди збережеться, тоді через час, рівний інтервалу від моменту старту до команди “круга”, вони всі дружно пересічуть лінію старту, тобто матимуть однакові значення координати відносно цієї лінії.
Тепер опишемо цей же епізод, але по-науковому. При купчастому переміщенні можна говорити про узгодженість руху бігунів. Проте за давньою традицією слова в науковій термінології прийнято замінювати іноземними, найчастіше англійськими. Але з англійською мовою є проблеми, на які звернув увагу ще німецький письменник Курт Тухольський: ця мова складається з одних іноземних слів, які до того ж неправильно виголошуються. Так от, якщо узяти англійський варіант слова “узгодженості” і виголосити його правильно, то вийде термін “когерентність”. З точки зору цього поняття описаний вище процес змагання можна розглядати як розпад когерентності по координаті до команди “круга” і її відновлення після.
Ріс.3.1 Схематичне зображення процесів, що забезпечують формування спінової луни.
Такого типа процес розпаду і відновлення когерентності на дрібніших об'єктах, магнітних моментах ядер, удалося реалізувати в 1950 р. американцеві Е.Хану [3]. Як всякі магнітні моменти їх можна змалювати у вигляді векторів M, орієнтованих уздовж магнітного поля H. Стартовим сигналом для векторів M є імпульс поперечного змінного магнітного поля, що відхиляє їх від напряму H. Подібно похило поставленій дзизі, що процесує довкола вертикальної осі, нахилені вектори M процесують довкола H з так званою частотою Лармора, залежною від величини H.
Відразу після стартового імпульсу вектори M паралельні, що відповідає когерентності їх прецесій по фазі. Така фазова когерентність характеризується сумарною компонентою намагніченості m, що обертається довкола поля H з частотою. За законами електромагнетизму змінне магнітне поле, пов'язане з m, створює змінне електричне поле, збуджуюче електричний струм в приймальному пристрої.
Хан добився того, аби даний струм убував з часом, що на рис.3,б змальовано за допомогою хвоста, наступного за стартовим імпульсом. У експерименті це досягалося за рахунок неоднорідностею поля H, із-за яких частоти в різних точках зразка опинялися різними. Тому вектори M, процесу є з різними швидкостями, врешті-решт рівномірно розподілялися по поверхні конуса прецесії. Виходить хаотичний розподіл фаз прецесій, тобто фазової когерентності немає. При такій взаємній орієнтації векторів M змінна складова m=0, відповідно відсутній і струм в приймачі.
При зміні знаку поля H напрям прецесії M міняється на протилежний, що відповідає команді “кругу” в розглянутому вище прикладі. Технічно це здійснюється за допомогою імпульсу перемагнічування, який подається у момент часу t1, коли фазова когерентність втрачена. Після зміни напряму прецесії починається відновлення фазової когерентності. Вона повністю відновиться через час t1 після імпульсу перемагнічування, як і в разі прикладу з бігунами. Разом з фазовою когерентністю відновиться і змінна складова намагніченості m, а отже, і сигнал в приймачі. Саме цей сигнал Хан назвав спіновою луною, оскільки він обумовлений ядерними магнітними моментами спинів. Його тривалість визначається часом розпаду фазової когерентності, тобто довжиною хвоста після стартового імпульсу.
Збуджені атоми
Якщо замість магнітних дипольних моментів ядер “залучити до роботи” дипольні електричні моменти атомів, аналогом ехо-камери спину буде ехо-камера фотонна. На перший погляд відмінність між цими сигналами виглядає як чисто кількісне. Частоти прецессий ядерних спинів лежать в радіочастотної області, відповідної метровим радіохвилям, тоді як частоти коливань дипольних електричних моментів атомів відносяться до оптичного діапазону, тобто вище в мільйони разів. Але з точки зору квантової механіки це кількісна відмінність наводить до якісної через те, що енергія оптичного фотона (згідно формулі Планка E = h?, де h - постійна Планка) в ті ж мільйони разів більше енергії радіочастотного фотона.
В разі ехо-камери спинової луни випромінювана енергія складає нікчемну долю від повної енергії ядерних спинів, тому її можна не враховувати при описі їх поведінки на всіх етапах формування ехо-камера-сигналу. Енергетика фотонної ехо-камери виглядає зовсім інакше. Досить сказати, що самі дипольні електричні моменти, на яких формується ехо-камера-сигнал, створюються стартовим імпульсом. (Атом в “звичайному” стані дипольним моментом не володіє, а набуває його під дією зовнішнього електричного поля, переходячи в збуджений стан.) Тому енергія поглиненого фотона не може бути менше енергії інших взаємодій за участю збудженого атома. До речі, про поглинені фотони. Звичайна модель з їх зникненням при поглинанні не дозволяє описати появу фотонів при випромінюванні, коли атом “знімає” своє збудження. Більш того, опис фотонів як об'єктів, рухомих із швидкістю світла, неможливо без використання спеціальної теорії відносності. Розділ фізики, що об'єднав квантову механіку і спеціальну теорію відносності, отримав назву квантової електродинаміки (скорочено КЕД).
У КЕД електрони і фотони не можуть існувати окремо. Кожен електрон обов'язково оточений хмарою фотонів, а кожен фотон - хмарою з пар електрон-позитрон. Якщо бути послідовними, то в цю схему слід було б включити інші елементарні частки (баріони, мезони, інші лептони і так далі), але такий вихід за межі КЕД в рамках однієї статті нам не здолати. Тут у нас немає можливості до кінця розібратися навіть з КЕД. Річ у тому, що кожен фотон, маючи рівну нулю масу спокою, може існувати, лише рухаючись із швидкістю світла.
Фотонна (світлова) ехо-камера або просто фотон-ехо-камера - нелінійний оптичний ефект, який також дозволяє здійснити звернення часу в системі атомних часток: атомів, молекул газу і рідини, домішок в кристалах, на екситонах напівпровідників і інших випадках. Це одне з найкрасивіших когерентних явищ, яке складає основу цілого напряму в сучасній оптиці і лазерній техніці - оптичній ехо-камера-спектроскопії [1]. Фотонна ехо-камера є проявом взаємодій ультракоротких світлових імпульсів з речовиною - газами, середовищами, що конденсують, плазмою - і в даний час широко застосовується для дослідження кінетичних процесів релаксації елементарних збуджень в твердих тілах. Воно також володіє своєрідною оптичною пам'яттю і може служити основою для зберігання, обробки і передачі великих масивів інформації. Фізичне єство цього явища полягає в наступному.
Хай в нашому розпорядженні є джерело ультракоротких лазерних імпульсів і відповідне резонансне середовище. Наприклад, це може бути лазер на фарбниках, що працює в імпульсному режимі, і кристал рубіна (кристал корунду Al2O3 з домішками іонів хрому Cr3 +). Частота лазерного випромінювання підбирається так, щоб бути резонансною (майже збігатися по величині) до деякого атомного переходу іона хрому. Саме цей матеріал використовувався в перших експериментах по виявленню і вивченню фотон-ехо-камери. Довжина хвилі оптичних імпульсів l = = 0,635 мкм, що відповідало фотонам енергії E = hn > 1,9 эВ. Ці фотони могли резонансно поглинатися тривалентним іоном хрому, що заміщає атом алюмінію в кристалічній решітці корунду, тобто вони переводили хром в збуджений стан, віддалений від основного рівня на енергію фотона. Тривалість лазерних імпульсів складала 15-20 нс. Час життя збудженого стану біля Т1 = 20 мкс, що перевершувало тривалість імпульсів в 1000 разів і дозволяло впливати багато разів на іон хрому в його збудженому стані. В даний час використовуються ще більш ультракороткі світлові імпульси аж до декількох фемтосекунд (10-15 с).
Якщо через кристал рожевого рубіна (він містить хром як домішку в кількості 0,005% по масі) пропустити два послідовні світлові імпульси з приведеними вище параметрами і інтервалом між імпульсами t < Т1, то в системі домішкових іонів хрому формується когерентний стан, який в результаті свого розпаду висвічує новий оптичний когерентний імпульс - сигнал двохімпульсної фотонної ехо-камери. Таким чином, це явище аналогічно явищу спин-ехо-камери. Відмінність полягає в діапазоні електромагнітного поля випромінювання: спінова-ехо-камера реалізується в радіодіапазоні, фотонна ехо-камера - в оптичному і інфрачервоному діапазонах довжин хвиль. У радіодіапазоні зазвичай довжина хвилі набагато перевершує розміри зразків резонансного середовища, тоді як при світлових довжинах хвиль ситуація зворотна: l! l, де l - товщина кристала рубіна. Це наводить до нових властивостей фотонної ехо-камери в порівнянні із спином - виникає певна спрямованість ехо-камера-сигналу.
3.2 Експеріментальне дослідження явищаДослідження по спектроскопії домішкових неврегульованих твердотілих систем методом фотонної ехо-камери (ФЕ) були початі в лабораторії електронних спектрів в 1990 році. Ці дослідження сталі можливі в результаті розробки (Ю.Г. Вайнер, 1989-1990 рр.) методики низькотемпературних вимірів часів оптичного дефазування і швидкої спектральної дифузії в домішкових стеклах методом некогерентного ФЕ (НФЕ) і створення експериментальної установки. Вже перші виміри на створеній установці привели до виявлення (одночасно з групою американських дослідників (L.R. Narasimhan et al, Chem. Phys. Lett. v.176, N3,4 (1991)) спектральної дифузії [1-3]Наносекунди, важливому для розуміння природи елементарних низькочастотних збуджень в стеклах експериментальному факту. В даний час проводяться систематичні експериментальні і теоретичні дослідження по динаміці домішкових стекол з використанням двох різновидів техніки ФЕ: НФЕ з широкосмуговим лазерним джерелом і двохімпульсного пікосекундного ФЕ (2ФЭ).
Істотною перевагою методу НФЕ є можливість реалізації високого тимчасового дозволу, що робить можливим дослідження ультрамиттевих релаксаційних процесів в домішкових стеклах. Високий тимчасовий дозвіл установки (25 - 30 фс) дозволяє, зокрема, надійно розділяти ділянки кривих спаду ФЕ, відповідні бесфотонної лінії і фононному крилу (див. Мал. 3.2) і проводити таким чином виміри часу оптичного дефазування Т2 аж до температури 100 До і вище.
Мал. 3.2 Криві спаду двохімпульсної пікосекундної фотонної ехо-камери (а) і некогерентної фотонної ехо-камери (b-d) для системи цинк-октаетілпорфін в толуолі. Пунктирна лінія на (а) відповідає апроксимуючій експоненціальній залежності, використовуваній для визначення часу оптичного дефазування, Т2. Вставка на (d) демонструє розділення ділянок кривої спаду, відповідних бесфононной лінії (ZPL) і фононному крилу (PW).
Співпраця з дослідниками Байройтського університету (D. Haarer, S. Zilker), експериментальна установка 2ФЭ яких оснащена оптичним криостатом на Не-3, дало можливість вперше провести унікальні виміри процесів оптичного дефазування в домішкових стеклах в широкому діапазоні температур (від 0,35 До до 100 До) і отримати унікальну інформацію про релаксаційні процеси в стеклах в широкому температурному діапазоні [4-10] (див. Мал. 3.3). Ці виміри дозволили вперше визначити температури, при яких починає виявлятися вклад в оптичне дефазування, пов'язаний з взаємодією молекул домішки з квазілокалізованими низькочастотними коливальними модами аморфної матриці в системах, що вивчаються [3-11]. В ході цих вимірів був вперше виявлений ефект дисперсії часів оптичного дефазування Т2 в домішковій аморфній системі: тетра-терт-бутилтеррилен в поліізобутилені [7,12]. Аналіз залежності часів Т2 від температури в системах, що вивчаються, виявив відмінність низькотемпературної частини цієї залежності від передбачень теорії ФЕ в низькотемпературних стеклах.
Мал. 3.3 Температурні залежності зворотного часу оптичного дефазування, (яку можна розглядати як величину еквівалентну однорідній ширині лінії) для двох систем: – резоруфин в d-этаноле (a) і тетра-терт-бутилтеррилен в поліізобутилені (b), - виміряні методами двохімпульсної фотонної ехо-камери - (квадрати) і некогерентної фотонної ехо-камери - (кухлі). На (а) трикутниками показані результати незалежних вимірів виконаних в [M. Berg et al., J. Chem. Phys., 88, 1564 (1988)]. На (b) штриховими лініями показані вклади завширшки лінії від взаємодії домішки з дворівневими системами і квазілокальними низькочастотними модами матриці, переважаючі, відповідно, при низьких і високих температурах.
Чисельний аналіз отриманих даних і пояснення виявленої незгоди з передбаченнями існуючих теорій зажадав вдосконалення існуючих теоретичних моделей. Була розроблена і апробована модифікована модель ФЕ в низькотемпературних стеклах (А.В. Наумов, Ю.Г. Вайнер) [13,14]. Нова модель дозволяє враховувати всілякі мікроскопічні особливості взаємодії домішкових молекул з ДУС (наприклад, наявність мінімальної відстані між хромофорами і ДУС, дисперсію значень константи взаємодії примесь-ДУС, зміна властивостей матриці поблизу іонних хромофорних молекул і тому подібне). Для перевірки застосовності моделі м'яких потенціалів до опису процесів оптичного дефазування в аморфних середовищах розроблена методика розрахунків ширини ліній в таких середовищах в рамках моделі м'яких потенціалів (Ю.Г. Вайнер, М.А. Кольченко) [15,16]. Показано, що модель м'яких потенціалів якісно правильно описує температурну поведінку однорідної ширини бесфононной лінії у відносно широкому температурному діапазоні і може бути з успіхом використана в спектральних дослідженнях.
3.3 Місце фотонної луни серед інших явищ нелінійної оптикиНауковий напрям “Спектроскопія атомів і молекул” є одним з фундаментальних напрямів сучасної фізики. Даний напрям поширюється на такі явища нелінійної оптики: атомна і молекулярна спектроскопія; математична обробка і інтерпретація спектроскопічного експерименту; квантова динаміка і спектроскопія багатозарядних іонів; когерентна і нелінійна оптика.
Запропоновані нові підходи і розроблений комплекс прикладних програм для вирішення зворотних і прямих завдань обробки і інтерпретації експериментальних даних з особливостями (фрактальний шум, перемежана, статечні для дробу тренди, пропуски в даних і ін.). Розвиваються ідеї по вживанню вейвлет-перетворення для усунення обчислювальної нестійкості некоректних завдань. Запропоновано використовувати базис адаптивних вейвлетов в разі миттевопротікаючих процесів в нелінійних динамічних системах, редукції складних сигналів і томографії. На основі безперервного вейвлет-перетворення і методу похідної спектрометрії розроблений алгоритм підвищення дозволу спектральних ліній, частково і повністю перекритих. Використовуючи концепцію дробової похідної, створений метод визначення аналітичної форми спектральних ліній і їх параметрів на основі розподілів Гауса, Лоренца і Цалліса.
Спектроскопія багатозарядних іонів, яка почала в 80-і роки інтенсивно розвиватися в провідних наукових центрах світу у зв'язку з прогресом в області технології здобуття пучків важких іонів, є одним з напрямів сучасній атомній спектроскопії. Для дослідження спектрів багатозарядних іонів, які із-за сильного обурення власним полем випромінювання не можуть бути описані в рамках теорії обурень стандартними методами квантової електродинаміки, був потрібний розвиток нових методів в квантовій теорії. На кафедрі були закладені основи нового методу в квантовій теорії, який може відкрити нові можливості для опису квантово-електродинамічних ефектів в спектрах випромінювання багатозарядних іонів. В рамках методу була побудована теорія нестабільних зв'язаних станів атомних систем, процесів випромінювання і автоіонізаційного розпаду без звернення до теорії обурень і квазістаціонарного наближення, а також побудована теорія природного розширення спектральних ліній атомів, застосовна і у разі, коли взаємодія атома з власним полем випромінювання не є малим обуренням. Показано, що в разі перекривання рівнів станів з однаковими повним моментом, його проекцією і парністю, яке може мати місце для важких багатозарядних іонів, взаємодія атома з власним полем випромінювання стає ефективно сильною і може наводити до істотної відмінності форми контура спектральної лінії від лоренцевскої. Проведені розрахунки контурів спектральних ліній He- і Li- подібних іонів урану показали, що в таких спектрах можуть спостерігатися непертурбативні ефекти, наприклад, розщеплювання спектральних ліній, обумовлене взаємодією атома з власним полем випромінювання.
В області когерентної оптики ведуться наступні наукові дослідження: 1) розробка нових методів оптичної ехо-камера-спектроскопії, у тому числі у фемтосекундному діапазоні тривалості; 2) розробка нових фізичних принципів оптичної обробки інформації на основі довгоживучої фотонної ехо-камери і тригерного оптичного надвипромінення; 3) розробка теоретичних основ лазерного охолоджування твердих тіл і оптимальних режимів роботи лазерних рефрижераторів; 4) дослідження актуальних проблем квантової оптики і, серед них, - проблеми посилення стислого світла в режимі тригерного оптичного надвипромінення, а також проблеми квантової пам'яті на основі оптичного субвипромінювання.
У атомній фізиці зазвичай мають справу лише з одним типом взаємодії атомних електронів і вільних фотонів - поглинанням фотона частоти n під час переходу електрона із стану з енергією E1 в стан з енергією E2.
Ріс.4.1 Механічна модель поширення світла в речовині
На рис.4.1 представлена механічна модель поширення фотона в речовині з врахуванням перевипроминювача. Кулька масою m0, рухаючись із швидкістю v, налітає на ланцюжок сферичних маятників, що мають таку ж масу m0. При зіткненні з першим маятником кулька, за законами пружних зіткнень, передає йому всю швидкість v. Той здійснює повний оберт (якщо v > 2(rg) 1/2, де r - довжина підвісу, g - прискорення вільного падіння) і після повторного зіткнення з кулькою повертає йому швидкість v.
Уповільнення поширення світла в речовині - явище добре відоме: з ним пов'язаний ефект заломлення під час переходу кордону розділу двох середовищ. Його зазвичай характеризують показником заломлення n (v = c/n). У звичайних умовах значення n близькі до одиниці (для скла n близько 1.5) для vmin виходить значення n=1012. Що ж заважає спостерігати значення n>>1 для резонансних фотонів?
Річ у тому, що атоми в речовині беруть участь в тепловому русі. Через це їх реакція на вільний фотон виявляється різною або, як прийнято говорити в оптиці, некогерентній. У механічній моделі така некогерентність може бути зв'язана, наприклад, з виходом маятників з площини малюнка. В цьому випадку рух кульки стане непрямолінійним, і якщо замість ланцюжка узяти плоску сітку маятників, то на виході з неї кулька матиме довільний напрям швидкості.
Отже, взаємодія атомного електрона з вільним резонансним фотоном може кінчитися виселенням першого в збуджений стан і затриманням другого. Але цей процес займає кінцевий час, протягом якого електрон блукає між станами з енергіями E1 і E2, а затриманому фотону наказ про звільнення то підписується, то відміняється. Якщо в проміжку між підписанням наказу і його відміною фотон встигає ушитися за межі фотонної хмари, то спроба атома збудитися виявляється невдалою. Таких фотонів, що зірвалися з гачка, в зразку зазвичай багато, і пов'язане з ними результуюче випромінювання залежить від міри когерентності перехідних процесів в атомах. Якщо вони когерентні, то і фотони, що випромінюють, формують когерентне випромінювання, подібне лазерному. Повністю некогерентні процеси наводять лише до теплового випромінювання.
Є дві причини, чому когерентне випромінювання має вищу інтенсивність в порівнянні з тепловим.
По-перше, когерентні фотони максимально підсилюють один одного, оскільки їх вектори електричного і магнітного полів паралельні. В разі теплових фотонів ці поля мають довільну орієнтацію, тому їх середнє значення значно менше максимального.
По-друге, попадання когерентного фотона у фотонну хмару збудженого атома збільшує вірогідність випромінювання другого такого ж фотона. Тому інтенсивність вимушеного випромінювання набагато вища, ніж спонтанного, що і забезпечує роботу лазерів.
Тепер у нас все готово для опису процесу формування фотонної ехо-камери під дією оптичних когерентних імпульсів. Перший когерентний імпульс збуджує в атомах перехідні процеси, які так само мають бути когерентними, принаймні перший час після імпульсу. Цим обумовлена активна післядія таких імпульсів. З часом когерентність руйнується, як і в разі спінальної ехо-камери, що веде до загасання післядії.
Дослідження просторових і спектральних властивостей фотонної ехо-камери і можливості кутової оптичної ехо-камера-спектроскопії (спільно із співробітниками ЕТН-центра, Цюріх, Швейцарія).
Мал. 4.2. Зміна довжини хвилі фотонної ехо-камери при зміні кута між хвилевими векторами і збуджуючих імпульсів. Вертикальні стрілки позначають центр «тягарі» спектральній лінії сигналу ФЕ при рівному 0°, 7.4° і 10°. Штриховою лінією позначений спектр імпульсів. Сигнал фотонної ехо-камери має головний максимум уздовж хвилевого вектора на частоті
У деяких резонансних середовищах (напр., в полімерних плівках, легованих молекулами фарбника [1]) експериментально досліджені просторові і спектральні властивості фотонної ехо-камери (ФЕ) і виявлена зміна довжини хвилі ФЕ (відносно довжини хвилі збуджуючих імпульсів) при варіюванні кута між хвилевими векторами цих імпульсів. Один з результатів приведений на мал. 4.2.
Збуджену двома, рознесеними в часі, лазерними імпульсами резонансне середовище можна ототожнити з керованим інтерференційним фільтром. Властивості динамічних «грат» нерівноважної населеності і поляризації, лежачих в основі цього фільтру, були експериментально досліджені в роботі [2]. Аналіз, проведений в роботі [3] на основі експериментів [1, 2], показує на можливість кутової оптичної ехо-камера-спектроскопії.
... с организации экспортного отдела и заканчивают созданием международного филиала. Однако некоторые идут дальше и превращаются в транснациональные компании, высшее руководство которых уже занимается планированием маркетинга и его управлением во всемирном масштабе. Фирмы США расширяют свою международную деятельность и ищут людей, относительно свободно владеющих тем или иным иностранным языком, ...
0 комментариев