1.3 Особенности измерения электрической проводимости.
В данном экспериментальном исследовании измерялась электрическая проводимость магнитной жидкости в зависимости от концентрации твёрдой фазы. Для этого использовалась двухэлектродные ячейки, одна из которых имеет электроды из гладкой платины, а другая из меди.
Для вычисления электропроводности магнитной жидкости необходимо знать константу ячейки А (м-1), которую невозможно определить прямым измерением длины сосуда и площади его поперечного сечения вследствие:
а) рассеивания силовых линий тока, которые не ограничиваются столбиком магнитной жидкости, находящейся точно между электродами;
б) невозможности выдержать точно параллельное расположение электродов и строго определённую их форму;
в) сложной формы стеклянного сосуда, ограничивающего распространение силовых линий тока.
На практике принято [Лопатин] для определения константы ячейки А применять стандартные водные растворы хлористого калия, величина электропроводности которых при различных температурах известна с большой точностью. После измерения сопротивления ячейки, заполненной раствором хлористого калия с известной величиной σ, из произведения А=σR легко вычисляется константа ячейки А.
Для вычислений стандартной величины электропроводности нормальных растворов хлористого калия при температурах до 50˚С удовлетворительные результаты даёт формула:
,
где с – константа, зависимость которой от концентрации раствора хлористого калия приведена ниже:
KCl…………………………………..0.01 0.1 0.5
C×104…………………………………232 228 218
При определении константы ячейки с применением стандартных растворов KCl, концентрация которых ниже 0.1 н., необходимо делать поправку на электропроводность воды, которая при 25˚С должна иметь величину, близкую к 1.1×10-6 сим×см-1.
1.4 Теория удельной объёмной проводимости применительно к магнитной жидкости.
Жидкими основами в магнитных жидкостях, как правило, являются органические среды, занимающие промежуточное положение между ионными диэлектриками и жидкими ионными проводниками (водными растворами электролитов). Широко используемый в качестве твёрдой фазы магнетит имеет в монолите относительно высокую удельную электрическую проводимость, которая, однако, на несколько порядков ниже, чем у металлов
γ≈2*104 См*м-1
Напомним, что в технических магнитных жидкостях объёмное содержание твёрдых частиц не превышает 25% (иначе наблюдается резкое снижение текучести). При этом магнитные частицы отделены друг от друга слоем ПАВ. Поверхностно активное вещество (например, олеиновая кислота) обычно также органическая жидкость, имеющая химическое сродство к основе и близкие с ней значения подвижности носителей заряда и их концентрации. Так как в качественно приготовленной магнитной жидкости все твёрдые частицы окружены слоем ПАВ, то объёмная проводимость магнитной жидкости должна определяться, по-видимому, концентрацией носителей заряда и их подвижностью в жидкой фазе.
В многочисленных экспериментах не было зарегистрировано существенного влияния магнитного поля, направленного либо параллельно, либо перпендикулярно к постоянному току, проходящему по измерительной ячейке, на электрическую проводимость магнитной жидкости.
Типичные вольт-амперные характеристики качественно приготовленных магнитных жидкостей на основе керосина, снятые без магнитного поля означают:
1) для жидкости с умеренной концентрацией дисперсной фазы (φ=0,008) ток резко возрастает с увеличением напряжения;
2) для жидкости высококонцентрированной (φ=0,3) ток с увеличением напряжения возрастает на очень маленькую величину.
Качественной считалась жидкость, коллоидные частицы Fe3O4 которой пять раз отмывались дистиллированной водой после осаждения. Для этих жидкостей в исследованном диапазоне концентраций φ=0-0,3, начиная с напряжённости Е=2,5 кВ/м, вольт-амперные характеристики становились линейными. По их углу наклона рассчитывалась удельная электрическая проводимость.
Удельная проводимость исследуемых магнитных жидкостей зависела от объёмной концентрации магнетита немонотонным образом. В области 0<φ≤0.09 проводимость росла с увеличением концентрации магнитных частиц, а в области высоких концентраций (φ>0.16) – падала. Причём графики, полученные разными экспериментаторами, расходятся. Это можно объяснить, по-видимому, температурной зависимостью электрической проводимости жидкости. Различие в значениях γ может быть обусловлено разной степенью отмывки дисперсного магнетита после его получения.
Известно, что аналогичный вид зависимости электрической проводимости свойствен растворам сильных электролитов, и снижение проводимости в области высоких концентраций объяснялось падением подвижности ионов при увеличении общего числа носителей заряда. Это обстоятельство позволяет предположить, что в магнитных жидкостях, полученных методом химической конденсации, существует примесный тип проводимости.
Для уточнения механизма переноса заряда в магнитных жидкостях проводилась серия опытов на жидкостях с магнетитом, который вообще не отмывался после процесса химической конденсации. Вольт-амперные характеристики таких жидкостей снять не удалось, кроме одной, у которой концентрация твёрдой фазы φ=0.27. В экспериментах, проводимых при t=22˚C, наблюдался экспоненциальный рост силы тока с увеличением напряжённости электрического поля. Начиная с Е=15-20 кВ/м, наблюдались скачкообразное увеличение I и нестационарность переноса заряда. Для жидкости, у которой φ=0.27, сила тока увеличивалась пропорционально напряжению до Е=15кВ/м, затем вольт-амперная характеристика теряла линейность. Электрическая проводимость этой жидкости рассчитывалась по линейному участку.
Сделаем оценку гидродинамической концентрации для объёмной концентрации φ=0.27. Для частиц средним диаметром dср=10 нм и толщины адсорбционного слоя δ=2нм (максимальная длина молекулы олеиновой кислоты) получим φr=(dr/dср)*φ=0.74. При такой концентрации покрытые слоем олеиновой кислоты полидисперсные частицы магнетита находятся в непосредственной близости друг к другу. Следовательно, перемещение в электрическом поле примесных ионов, адсорбирующихся на частицах магнетита в процессе химической конденсации и переходящих в раствор после разбавления концентрированной пасты жидкой основой, затруднено из-за их взаимодействия с полярными длинноцепочечными молекулами олеиновой кислоты. Это взаимодействие и могло быть причиной стационарного переноса заряда в жидкости с объёмной концентрацией непромытого магнетита φ=0.27, содержащей избыточное количество примесных ионов. В жидкостях с меньшими концентрациями непромытого магнетита примесные ионы относительно свободно перемещаются по жидкой фазе, вызывая предпробойное состояние при увеличении напряжённости поля. Другая причина падения электрической проводимости в области высоких концентраций магнитных частиц может заключаться в усиливающимся рассеивании примесных ионов на магнитных моментах частиц.
Приведённые результаты позволяют оценить качество магнитной жидкости по её вольт-амперной характеристике. Избыток примесных ионов в концентрате из коллоидных частиц магнетита и стабилизатора затрудняет стабилизацию магнитной жидкости, так как адсорбирующиеся на частицах ионы препятствуют полному покрытию частиц адсорбционной оболочкой. Следовательно, отклонение от линейной вольт-амперной характеристики или нестационарность процесса переноса заряда в жидкости означают неполную отмывку высокодисперсного магнетита, что приводит к снижению агрегативной устойчивости магнитной жидкости.
Удельная электрическая проводимость магнетитовых магнитных жидкостей на углеводородной основе, измеренная на переменном токе f=60Гц, имеет тот же порядок, что и проводимость, измеренная на постоянном токе: γ=10-6 См/м. Такой же результат был получен Б.Капланом и Д.Джейбековым (1976) для магнитной жидкости на основе воды.
По зависимости удельной электрической проводимости магнитной жидкости от температуры можно оценит энергию активации носителей заряда. Обработка данных зависимостей lnγ от 1/Т находят энергию активации
Энергия активации приблизительно равна 0.2 эВ для магнитных жидкостей и 0.6 Эв для керосина. Снижение этой энергии для магнитных жидкостей по сравнению с керосином согласуется с гипотезой о существовании в магнитных жидкостях примесных ионов.
Отметим, что электрическое сопротивление магнитных жидкостей снижается приблизительно на три порядка по сравнению с основой. Однако оно остаётся на несколько порядков выше, чем у традиционных магнитных материалов, и поэтому при воздействии внешних магнитных полей потери в них на индукционные токи будут малы.
Электрическая прочность магнитных жидкостей характеризуется пробивным напряжением. Измерения пробивного напряжения для магнитных жидкостей на углеводородной основе показали его снижение (более чем на 50%) по сравнению с жидкой основой. С увеличением магнитного поля, направленного параллельно электрическому, пробивное напряжение дополнительно уменьшается и достигает Епр≈0.5 МВ/м при индукции 0.4=0.8 Тл. Эти данные получены для магнетитовых магнитных жидкостей на кремнийорганической основе. Многократное воздействие электрического поля снижало пробивное напряжение испытуемого образца.
Глава 2.
Теория диэлектрической проницаемости и методика её измерения.
... коэффициента деполяризации от концентрации. Одним из возможных путей изучения механизма светорассеяния является исследование динамики рассеяния света в импульсных электрических и магнитных полях. Схема экспериментальной установки, предназначенной для изучения процессов рассеяния света магнитной жидкостью в импульсных магнитных полях, представлена на рисунке 4. 3 2 ...
тропии электрической проводимости магнитной жидкости с немагнитным наполнителем в магнитном поле. Магнитные жидкости – ультрадисперсные коллоиды ферро– и ферримагнетиков при воздействии на них однородного магнитного поля приобретают анизотропию макроскопических свойств. Очевидно, её появление следует связывать с ориентационным упорядочиванием и взаимодействием дисперсных частиц. Одним из наиболее ...
... магнетит в керосине с олеиновой кислотой структурных образований из исперсных частиц. Де Жен и Пинкус [33 МД] рассмотрели коллоид, состоящий из идентичных ферромагнитных частиц, взвешенных в пассивной по отношению к магнитному полю жидкости. Для характеристики дипольного взаимодействия, приводящего к агрегированию использован параметр, называемый константой спаривания . Было предположено, что ...
... полученных в ходе выполнения настоящей работы магнитных жидкостей (с магнитными оксидами железа в качестве дисперсионной фазы). Применение магнитных жидкостей позволяет варьировать свойства данных сорбентов в широких пределах. ü Методом электронно-микроскопического исследования показано, что разработанный способ получения магнитных сорбентов обеспечивает равномерное распределение частиц ...
0 комментариев