Министерство народного образования Республики Беларусь
Беларусский ордена трудового красного знамени государственный университет имени В.И. Ленина
Химический факультет
Кафедра неорганической химии
Изучение возможности применения магнитных жидкостей для синтеза магнитных сорбентов
Дипломная работа студентки 5-го курса
Кекало Екатерины Александровны
Руководитель
канд. хим. наук, доцент Н.Н. Горошко
Рецензент
доктор хим. наук,
профессор Е.А. Стрельцов
Дипломник Е.А. Кекало
"Допустить к защите" 04.06.2004
Зав.кафедрой
Доктор хим. наук С.К. Рахманов
г. Минск,
2004г.
Содержание:Содержание
Введение
1. Обзор литературы
1.1.Магнитные сорбенты
1.1.1. Синтез пористых ферритов с применением выгорающих добавок
1.1.2. Неорганические магнитонаполненные адсорбенты
1.1.3. Углеминеральные магнитные сорбенты
Изотермы адсорбции
1.2.Магнитная жидкость как коллоидная система
1.2.1.Устойчивость магнитных жидкостей
1.2.2.Обзор методов получения магнитных жидкостей
1.2.2.1.Дисперсионные методы получения MЖ
1.2.2.2.Методы конденсации
2. Методика эксперимента
2.1. Синтез магнитного материала
2.1.1. Синтез магнетита
2.1.2. синтез магнетита
2.1.3. Синтез магнитной жидкости с водной дисперсионной средой и стабилизатором олеатом ТЭА
2.1.4.Синтез магнитной жидкости с водной дисперсионной средой и стабилизатором олеатом аммония
2.1.5. Синтез магнитной жидкости с водной дисперсионной средой и минеральными кислотами в качестве стабилизатора
2.1.6. Синтез магнитной жидкости с деканом в качестве дисперсионной среды и стабилизатором олеиновой кислотой
2.1.7. Синтез магнитной жидкости с керосином в качестве дисперсионной среды и стабилизатором олеиновой кислотой
2.2. Синтез магнитного сорбента
2.2.1. Синтез намагниченного сорбента 1
2.2.2. Синтез намагниченного сорбента 2
2.2.3. Синтез намагниченного сорбента 3
2.2.4. Синтез намагниченного сорбента 4
2.2.5. Синтез намагниченного сорбента 5
2.2.6. Синтез намагниченного сорбента 6
2.2.7. Синтез намагниченного сорбента 7
2.3. Методики анализа
2.3.1. Определение содержания Fe(II) при помощи количественного анализа..
2.3.2. Определение содержания Fe(III) при помощи количественного анализа
2.3.3. Определение содержания Fe(II) и Fe(III) в осадке, образующемся при соосаждении гидроксидов при помощи количественного анализа
2.3.4. Упрощенный метод определения поверхности по адсорбции воздуха
2.3.5.Эктронномикроскопическое исследование
2.3.6. Рентгенографическое исследование
2.3.7. Дериватографичеекое исследование
3. Результаты и их обсуждение
3.1. Рентгенофазовое исследование
3.2. Количественный анализ
3.3. Изотермы адсорбции
3.4. Электронная микроскопия
3.5. Удельная поверхность
3.6. Намагниченность
3.7. Дериватографическое исследование
Выводы
Литература
Резюме
Приложение
ВведениеДанная дипломная работа посвящена синтезу и изучению магнитных сорбентов, представляющих собой магнитный (либо намагниченный) материал с высокими адсорбционными свойствами.
Преимущество таких адсорбентов по сравнению с обыкновенными (не магнитными) состоит в том, что обладая высокой сорбционной емкостью они могут управляться при помощи магнитного поля. Адсорбенты с магнитными свойствами применяются для контактной очистки веществ, что существенно упрощает адсорбционный процесс и полноту отработки адсорбента, исключает стадию отделения отработанного адсорбента от раствора, являющуюся одной из трудоемких, заменив ее магнитной сепарацией. Магнитные сорбенты уже широко используются для очистки сточных вод, сбора нефти с поверхности водоемов и в медицине (очищают костный мозг и др.) [1-8].
Придание сорбентам магнитных свойств может обеспечить значительное повышение эффективности их использования, поскольку открывается возможность вводить сорбенты в очищаемую среду в виде дисперсной фазы при контролируемой поверхности межфазного контакта и извлекать из среды физическим методом. Известно [8], что придание сорбентам магнитных свойств обычно не снижает емкости и селективности сорбции, а в ряде случаев улучшает эти характеристики, повышая также скорость процесса сорбции – десорбции. Известно также, что магнитные сорбенты способны улучшать ионообменные свойства почв, что указывает на возможность использования материалов данного типа для направленного изменения свойств биологических систем.
Использование данных адсорбентов не ограничивается указанными областями их применения, тем более что они с технологической точки зрения во многих адсорбционных процессах наиболее предпочтительны.
Есть много способов их получения, принципиально отличающихся друг от друга. Большинство из них являются трудоемкими и влекут за собой большие энергетические затраты, что существенно сужает диапазон возможного применения магнитных сорбентов.
На кафедре неорганической химии Белгосуниверситета им. В.И. Ленина в течение нескольких десятков лет проводятся исследования по применению коллоидных систем на основе олова, вольфрама, ванадия, железа и некоторых других металлов для получения пленок и тонких покрытий.
Целью настоящей работы является разработка способа синтеза магнитоуправляемых сорбентов при использовании магнитной жидкости и изучение некоторых их свойств.
Актуальность поставленной в работе задачи подчеркивается потребностью различных областей науки и техники в недорогих магнитоуправляемых сорбентах. Так, магнитоуправляемые сорбенты, используемые для сбора нефти с поверхности водоемов, в медицине и других областях представляют собой дорогостоящие материалы, изготовление которых требует использования сложных технологических процессов и не менее сложного и дорогого оборудования.
Использование именно жидкого материала для пропитки сорбента (и придания ему тем самым магнитных свойств) выгодно отличает предложенный нами способ получения магнитных сорбентов от описанных в литературе [1-7]. Применение различных магнитных жидкостей (в отличие от магнетита определенного состава) позволяет в широких пределах варьировать свойства получаемого сорбента.
Автор считает необходимым выразить признательность к.х.н., научному сотруднику Макс Планк института угольных исследований, Мюлхайм ан дер Рур, Германия, Матусевич Н.П. и к.х.н., научному сотруднику Академии Наук Беларуси Самускевичу В.В. за помощь в выполнении физико-химических исследований а также за ценные замечания и пожелания высказанные в ходе обсуждения результатов.
... 4,5. Через краны - бпаста и вода попадают в перемешивающее устройство - 7. По окончании времени перемешивании смесь веществ с помощью крана - 8 попадает в пропиточную ванну - 9, в которую по ленточному конвейеру - 10 поступает древесина из термообрабатывающей печи - 11. После пропитки древесины в течении 30 минут образцы по ленточному конвейеру поступают в печь для последующей сушки. После этого ...
... и, конечно же, за многими другими, которые будут получены, — будущее. В этом направлении и работают многие НИИ и исследователи. Аспекты поиска новых лекарств, изыскание новых лекарственных веществ состоит из трех основных этапов: химический синтез, установление фармакологической активности и безвредности (токсичности). Такая стратегия поиска с большой затратой времени, реактивов, животных, труда ...
... химическое, макроструктурное модифицирование и одновременное обогащение бентопорошка, позволяют повысить сорбционные свойства и качество готовой продукции. 3.4 Разработка полимерных композиционных материалов на основе органоглин на основе бентонита месторождения «Герпегеж» Объектами исследований в данной части работы являются нанокомпозиты, полученные на основе органомодифицированных ...
... – x)Na+}xNa+ Таким образом, получены водорастворимые производные фуллерена С60, которые могут быть использованы в химии и химической технологии. УДК 541.138 СТРУКТУРА И СВОЙСТВА НИКЕЛЕВЫХ СПЛАВОВ, МОДИФИЦИРОВАННЫХ ОРГАНИЧЕСКИМИ ДОБАВКАМИ О.В. Долгих, Н.В. Соцкая, Д.В. Крыльский, М.Ю. Хазель Воронежский государственный университет Сплавы никеля уже давно нашли широкое применение в ...
0 комментариев