3.1 Исследование качественного минерального состава бентонита Центрального месторождения «Герпегеж»

В результате комплексного исследования качественного минерального состава бентонита методами рентгенографии, термогравиметрии и микроскопии (рисунки 1‑3) определено, что основным минералом бентонита Центрального месторождения «Герпегеж» является монтмориллонит. На рентгенограмме монтмориллонит диагностируется наличием серии типичных рефлексов (рисунок 1). Установлено присутствие кварца, каолинита, гидрослюды.

Рис. 1 –Рентгенограмма природного бентонита

Рентгенодифракционные исследования образцов глины проводили в интервале углов 2q от 2,0° до 40,0°.

Дифрактограмма природной глины содержит характерный пик в области 2q =7,53° (d =1.1 нм), соответствующий Брегговскому периоду расположения гетерогенных областей и отвечающий за расстояние между базальными поверхностями монтмориллонита (рис.1).

На дифференциально-термических кривых бентонита (рис. 2) обнаруживается ряд термических эффектов. При температурах 100‑110 °С наблюдается интенсивный эндотермический эффект, обусловленный выделением адсорбционной и межслоевой молекулярной воды. Наличие дополнительного эффекта при температурах с максимумом 500‑505 °С вызвано удалением структурной воды.

Рис. 2 – Дифференциально-термические кривые природного и модифицированного бентонитов: 1 – природного, 2 – обогащенного, 3 – модифицированного серной кислотой, 4 – модифицированного карбонатом натрия

При изучении морфологии природного бентонита с помощью микроскопии в образцах отмечены образования монтмориллонита, зерна кварца округлой формы, слюдистые фрагменты, остатки кремнистых скелетов микроорганизмов – единичные спикулы губок, частицы опала в виде панцирей диатомей плохой сохранности.

На электронных микрофотографиях бентонита (рис. 3) частицы монтмориллонита имеют вид крупных и мелких чешуек в форме листовых агрегатов. Встречаются агрегаты с хлопьевидными очертаниями, складчатые образования. Видны частицы, отличающиеся по размерам и форме, объединенные в ультрамикроагрегаты и агрегаты со слабо- и высокоориентированным в микроблоки расположением. По типу, связанному с составом и условиями образования, по классификации Е.М. Сергеева, микроструктура исследованных образцов отнесена к ячеистой, характеризующейся образованием крупных микроагрегатов, контактирующих между собой по типу базис-базис, базис‑скол. Отмечаются поры: межчастичные, образованные неплотностями прилегания первичных частиц; межмикроагрегатные, большей частью щелевидные, различных размеров.

Рис.3 – Электронные микрофотографии спектры частиц природного бентонита

Химический состав бентонита представлен ионами натрия, кальция, калия и магния (таблица 2). Ввиду преобладания катионов кальция и магния, ионообменный комплекс бентонита относится к щелочноземельному типу.


3.2 Обогащение и модификация природного бентонита

Удаление крупнозернистых включений при обогащении, преимущественно кварца, приводит к перераспределению доли компонентов в составе бентонита. Отмечается увеличение содержания монтмориллонита. За счет удаления кварца, количество оксида кремния снижается до 72,30 %, содержание оксидов алюминия, калия, натрия, кальция и магния увеличивается.

Кислотная обработка приводит к частичному разрушению глинистых минералов, что иллюстрируется уменьшением содержания полуторных оксидов в химическом составе образцов. Количество оксида кремния увеличивается до 75,20 %, свободного оксида кремния – до 19,20 %.

Рентгеновским методом установлено, что образовавшийся в результате разрушения кристаллической структуры монтмориллонита кремнезем является аморфным. В ходе замещения обменных ионов металлов на ионы водорода кислоты и ионы алюминия, которые переходят из структурных позиций в обменные, поверхность бентонита приобретает кислые свойства.

Таблица 2

Состав природного и модифицированного бентонитов

Катионы Содержание катионов, ммоль/100 г сухого вещества
Бентонит
природный обогащенный модифицированный
Серной кислотой Карбонатом натрия

Na+

8,4 8,6 1,3 38,1

K+

1,4 1,5 0,6 2,0

Ca2+

13,3 16,6 15,0 5,1

Mg2+

12,8 13,1 6,0 3,0
Суммарно 35,9 39,8 22,9 48,2

Модифицирование карбонатом натрия оказывает влияние на химический состав бентонита. За счёт снижения содержания оксида кремния, в процессе растворения свободного кремнезема в щелочной среде, количество оксидов алюминия, железа, щелочных и щелочноземельных металлов в образцах увеличивается. В результате замещения щелочноземельных металлов в ионообменном комплексе на ионы натрия, содержание последних возрастает в 4,4 раза, что приводит к увеличению ионообменной емкости глины от 75 мг-экв / 100 г глины до 120 мг-экв / 100 г глины.

Для оценки катионообменной емкости бентонита использовали метод поглощения красителей основной природы (таблица 3). Определено, что образцы бентонита, за исключением модифицированного кислотой, проявляют высокую адсорбционную способность по отношению к органическому красителю метиленовому голубому (МГ), в том числе при повышенной адсорбционной нагрузке.

Таблица 3

Адсорбционные свойства природного и модифицированного бентонитов по отношению к органическому красителю

Показатели Величина показателя
Бентонит
природный обогащенный модифицированный
Серной кислотой Карбонатом натрия
Степень адсорбции, мг/г 72,6 65,0 38,7 87,1

Степень поглощения, %, при

адсорбционной нагрузке, мг/г:

 37,5

 75,0

150,0

97,9

92,6

55,4

98,9

96,4

68,2

13,5

12,7

 9,7

98,3

93,5

56,6

Модифицирование кислотой приводит к разрушению кристаллической структуры глинистых минералов вследствие вымывания ионов алюминия, железа и магния, способствуя развитию поверхности. Удельная поверхность бентонита возрастает с 24 до 76 м2/г за счет формирования более мелкопористой структуры – средний радиус пор уменьшается с 59 до 33 нм.

Таблица 4

Параметры пористой структуры природного и модифицированного бентонитов

Параметр Величина параметра
Бентонит
природный обогащенный модифицированный
Серной кислотой Карбонатом натрия

Суммарный объем пор, см3

0,47 0,51 0,76 0,54

Удельная поверхность, м2

24 24 76 48
Средний радиус пор, нм 59 64 33 51
Пористость, % 52 54 61 55

Термическая активация – предварительная сушка при температуре 100 °С, а затем 200 °С, улучшает адсорбционные свойства и способствуют развитию поверхности бентонитов, что связано с освобождением от воды адсорбционного пространства. При прокаливании при температурах до 600 °С удаляется структурносвязанная вода и, в связи со снижением степени гидратации поверхности материалов, происходит снижение адсорбционной способности. При прокаливании при температуре 800 °С удельная поверхность уменьшается, что может обуславливаться химическим взаимодействием слагающих породы оксидов, сопровождающимся формированием кристаллических структур иных типов и является причиной изменения адсорбционных свойств бентонитов, модифицированных серной кислотой и карбонатом натрия (таблицы 6, 7).


Таблица 6

Адсорбционные свойства природного и модифицированного бентонитов в зависимости от температуры прокаливания

Бентонит Степень адсорбции красителя, мг/г, при температуре прокаливания, °С
200 400 600 800
природный 49,8 29,0 9,1 3,0
обогащенный 75,0 25,0 8,8 3,0
модифицированный серной кислотой 10,0 8,1 5,5 24,6
модифицированный карбонатом натрия 87,1 25,0 5,0 48,4

Таблица 7

Удельная поверхность природного и модифицированного бентонитов в зависимости от температуры прокаливания

Бентонит

Удельная поверхность, м2/г, при температуре прокаливания, °С

200 400 600 800
природный 24 20 12 7
обогащенный 24 21 18 6
модифицированный серной кислотой 76 42 40 30
модифицированный карбонатом натрия 48 39 32 14

Информация о работе «Исследование физико-химических и прикладных свойств новых полимерных композиционных материалов на основе слоистых силикатов и полиэлектролитов»
Раздел: Химия
Количество знаков с пробелами: 58196
Количество таблиц: 10
Количество изображений: 4

Похожие работы

Скачать
88030
20
9

... очистки природных вод. Киев: Вища школа. 1981. 328 с. 2.     Небера В.П. Флокуляция минеральных суспензий. М.: Недра. 1983. 288 с. 3.     Вейцер Ю.И., Минц Д.М. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод. М.: Стройиздат. 1984. 202 с. 4.     Запольский А.К., Баран А.А. Коагулянты и флокулянты в процессах очистки воды: Свойства. Получение. Применение. М.: Химия. ...

0 комментариев


Наверх