РЕФЕРАТ

ПО ХИМИИ

НА ТЕМУ:

История открытия элементов

Киров,2008г.


ПЛАН

1.Золото

2.Серебро

3. Азот

4. Йод

5. Кобальт

6.Кремний

7.Висмут

8.Гелий

9.Бром

10.Фосфор


1. ЗОЛОТО

С латинского Aurum. Золото было известно человечеству с древнейших времен. Возможно, оно явилось первым металлом, с которым познакомился человек. Имеются данные о добыче золота и изготовлении изделий из него в Древнем Египте (4100-3900 годы до н. э.), Индии и Индокитае (2000-1500 годы до н. э.), где из него изготавливали деньги, дорогие украшения, произведений культа и искусства. В земной коре содержится 4,3·10–7%, в воде морей и океанов менее 5·10–6% мг/л. Относится к рассеянным элементам. Самородки большого размера встречаются крайне редко и, как правило, имеют именные названия. Самый большой из найденных на территории нашей страны самородков весил 36 кг. Он был найден на Южном Урале (Миасские прииски) в 1842 году. Этот самородок храниться в Алмазном фонде. Химические соединения золота в природе редки, в основном это теллуриды, креннерит и другие. Современные методы химического анализа позволяют обнаружить присутствие ничтожных количеств Au в организмах растений и животных, в винах и коньяках, в минеральных водах и в морской воде. Источники золота при его промышленном получении- руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств. Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой. Температура плавления золота 1064,4°C, температура кипения 2880°C, плотность 19,32 кг/дм3. Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м2. Толщина самых тонких листочков золота 0,1 мкм. Из 1 г золота можно вытянуть проволоку длиной 2,4 км. Еще за 1500 лет до н. э. золото употреблялось в качестве денег в Китае, Индии, Египте и др.Теперь золото и его сплавы используют для изготовления ювелирных изделий, монет, медалей, зубных протезов, деталей химической аппаратуры, электрических контактов и проводов, изделий микроэлектроники, для плакирования труб в химической промышленности, в производстве припоев, катализаторов, часов, для окрашивания стекол, изготовления перьев для авторучек, нанесения покрытий на металлические поверхности. Обычно золото используют в сплаве с серебром или палладием (белое золото). Содержание золота в сплаве обозначают государственным клеймом. Золото 583 пробы является сплавом с 58,3% золота по массе. Некоторые соединения золота токсичны, накапливаются в почках, печени, селезенке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении.

2.СЕРЕБРО

Серебро известно с древнейших времен, уже в 4 тысячелетии до нашей эры из него изготавливали украшения и монеты. Серебро считалось металлом, связанным с Луной. Содержание в земной коре 7·10–6% по массе. Встречается в самородном виде. Известно более 60 серебросодержащих минералов, Месторождения серебра делятся на собственно серебряные руды (содержание серебра выше 50%) и комплексные полиметаллические руды цветных и тяжелых металлов (содержание серебра до 10-15%). Комплексные месторождения обеспечивают 80% добычи серебра. Основные месторождения таких руд сосредоточены в Канаде, Австралии, Перу, Боливии и Японии. В древности серебро извлекали из руд обработкой их ртутью. В настоящее время применяется цианидное выщелачивание. Для получения серебра очень высокой чистоты (99,999%) его подвергают электрохимическому рафинированию в азотной кислоте или растворению в концентрированной серной кислоте. При этом серебро переходит в раствор в виде сульфата Ag2SO4. Добавление меди или железа вызывает осаждение металлического серебра. Серебристо-белый блестящий металл, с кубической гранецентрированной решеткой. Плотность 10,491 г/см3, температура плавления 961,93°C, кипения 2167°C. Серебро мягкий и пластичный металл, с теплопроводностью 419 Вт/м–1·К–1 при 20°C и самой высокой электропроводимостью. Примеси, присутствующие в серебре даже в незначительных количествах, ухудшают его механические свойства. Серебро легко вытесняется более активными металлами из своих соединений. При комнатной температуре не окисляется кислородом воздуха, при 170°C его поверхность покрывается пленкой Ag2O. Озон в присутствии влаги окисляет серебро до высших оксидов [AgO] или Ag2O3. Около 30-40% всего производимого серебра расходуется на производство кино и фотоматериалов. 20% серебра в виде сплавов с золотом, палладием, медью или цинком используется для изготовления контактов, припоев, проводящих слоев в электротехнике и электронике. 20-25% произведенного серебра служит для производства серебряно-цинковых аккумуляторов. Из сплава на основе серебра изготовляют монеты, ювелирные изделия, украшения и столовую посуду. Содержание серебра в бытовых серебряных изделий отражает «проба», штамп, указывающий массовую долю серебра в сплаве. Серебро используют для серебрения зеркал, аппаратов в пищевой промышленности, как катализатор дожигания CO в автомобильных двигателях, восстановления NO и реакций окисления в органическом синтезе. Сплавы серебра с Cu, Au, Pb, Hg находят применение в стоматологии в качестве пломбирующего и протезирующего материала. Нитрат серебра AgNO3 в медицине используют вместе с нитратом калия и называют ляписом. Использование колларгола (коллоидного раствора серебра) основано на вяжущих, прижигающих и антисептических свойствах. Серебро- микроэлемент растительных и животных организмов. В организме человека общее содержание серебра составляет несколько десятых грамма. Физиологическая роль серебра неясна. Соединения серебра токсичны. При попадании в организм больших доз растворимых солей серебра наступает острое отравление, сопровождающееся некрозом слизистой желудочно-кишечного тракта. Серебро бактерицидно, при 40-200 мкг/л погибают не споровые бактерии, а при более высоких концентрациях - споровые.

3.АЗОТ

Происходит от греческого слова azoos - безжизненный, по-латыни Nitrogenium. Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота в свободном состоянии. В 1772 г. Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. В 1787 г. А. Лавуазье установил, что "жизненный" и "удушливый" газы, входящие в состав воздуха, это простые вещества, и предложил название "азот". В 1784 г. Г. Кавендиш показал, что азот входит в состав селитры. В 1790 году Ж. А. Шапталь предложил латинское название азота (от позднелатинского nitrum - селитра и греческого gennao - рождаю, произвожу). К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота. Азот - четвертый по распространенности элемент Солнечной системы (после водорода, гелия и кислорода) и один из самых распространенных элементов на Земле, причем основная его масса (около 4*1015 т.) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9*10-3% по массе. Небольшие количества связанного азота находятся в каменном угле ( 1 - 2,5% ) и нефти (0,02 - 1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%). Хотя название "азот" означает "не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота. Азот немного легче воздуха; плотность 1,2506 кг/м3 (при 00С и 101325 н/м2 или 760 мм. рт. ст.), tпл-209,860С, tкип-195,80С. Азот сжижается с трудом: его критическая температура довольно низка (-147,10С), а критическое давление высоко 3,39 Мн/м2 (34,6 кгс/см2);плотность жидкого азота 808 кг/м3. В воде азот менее растворим, чем кислород: при 00С в 1 м3 H2O растворяется 23,3 г азота. Лучше, чем в воде, азот растворим в некоторых углеводородах. В отличие от молекулярного, активный азот весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами. Азот входит в состав очень многих важнейших органических соединений (амины, аминокислоты, нитросоединения и др.). Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания азота воздуха имеет разработанный в 1905 цианамидный метод, основанный на том, что при 10000С карбид кальция реагирует со свободным азотом. Cвободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара.

4. ЙОД

(лат. Iodium). Йод открыл в 1811 французский химик Б. Куртуа. Нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение фиолетового пара (отсюда название йод - от греческого iodes, ioeides - похожий цветом на фиалку, фиолетовый), который конденсировался в виде темных блестящих пластинчатых кристаллов. В 1813 - 1814 французский химик Ж.Л. Гей-Люссак и английский химик Г. Дэви доказали элементарную природу йода. Среднее содержание йода в земной коре 4*10-5% по массе. В мантии и магмах и в образовавшихся из них породах (гранитах, базальтах) соединения йода рассеяны; глубинные минералы йода неизвестны. История йода в земной коре тесно связана с живым веществом и биогенной миграцией. В биосфере наблюдаются процессы его концентрации, особенно морскими организмами (водорослями, губками). Известны 8 гипергенных минералов йода, образующихся в биосфере, однако они очень редки. Основным резервуаром йода для биосферы служит Мировой океан (в 1 литре в среднем содержится 5*10-5 грамм йода). Из океана соединения йода, растворенные в каплях морской воды, попадают в атмосферу и переносятся ветрами на континенты. Местности, удаленные от океана или отгороженные от морских ветров горами, обеднены йодом. Йод легко адсорбируется органическими веществами почв и морских илов. При уплотнении этих илов и образовании осадочных горных пород происходит десорбция, часть соединений йода переходит в подземные воды. Так образуются используемые для добычи йода йодо-бромные воды, особенно характерные для районов нефтяных месторождений (местами 1 литр этих вод содержит свыше 100 мг йода). Плотность йода 4,94 г/см3, tпл 113,5 °С, tкип 184,35 °С. Йод плохо растворим в воде (0,33 г/л при 25 °С), хорошо - в сероуглероде и органических растворителях (бензоле, спирте), а также в водных растворах йодидов. Химически йод довольно активен, хотя и в меньшей степени, чем хлор и бром. Адсорбируясь на крахмале, йод окрашивает его в темно-синий цвет; это используется в йодометрии и качественном анализе для обнаружения йода. Пары йода ядовиты и раздражают слизистые оболочки. На кожу йод оказывает прижигающее и обеззараживающее действие. Пятна от йода смывают растворами соды или тиосульфата натрия. Сырьем для промышленного получения йода в России служат нефтяные буровые воды; за рубежом - морские водоросли, а также маточные растворы чилийской (натриевой) селитры, содержащие до 0,4% йода в виде йодата натрия. Для извлечения йода из нефтяных вод (содержащих обычно 20 - 40 мг/л йода в виде йодилов) на них сначала действуют хлором или азотистой кислотой. Выделившийся йод либо адсорбируют активным углем, либо выдувают воздухом. На йод, адсорбированный углем, действуют едкой щелочью или сульфитом натрия. Йод и его соединения применяют главным образом в медицине и в аналитической химии, а также в органическом синтезе и фотографии. В промышленности применение йода пока незначительно по объему, но весьма перспективно. Так, на термическом разложении йодидов основано получение высокочистых металлов. Йод - необходимый для животных и человека микроэлемент. Среднее содержание йода в почвах около 3*10-4%, в растениях около 2*10-5%. В поверхностных питьевых водах йода мало (от 10-7 до 10-9%). В приморских областях количество йода в 1 м3 воздуха может достигать 50 мкг, в континентальных и горных - составляет 1 или даже 0,2 мкг. Поглощение йода растениями зависит от содержания в почвах его соединений и от вида растений. Некоторые организмы (морские водоросли - фукус, ламинария, филлофора, накапливают до 1% йода, некоторые губки - до 8,5%). Водоросли, концентрирующие йод, используются для его промышленного получения. В животный организм йод поступает с пищей, водой, воздухом. Основной источник йода - растительные продукты и корма.

В организме человека накапливается от 20 до 50 мг йода, в том числе в мышцах около 10 - 25 мг, в щитовидной железе в норме 6-15 мг. В различных биохимических провинциях содержание йода в суточном рационе колеблется (для человека от 20 до 240 мкг, для овцы от 20 до 400 мкг). Потребность животного в йоде зависит от его физиологического состояния, времени года, температуры, адаптации организма к содержанию йода в среде. Суточная потребность в йоде человека и животных - около 3 мкг на 1 кг массы (возрастает при беременности, усиленном росте, охлаждении). Введение в организм йода повышает основной обмен, усиливает окислительные процессы, тонизирует мышцы. В связи с большим или меньшим недостатком йода в пище и воде применяют йодирование поваренной соли, содержащей обычно 10 - 25 г йодистого калия на 1 тонну соли. Применение удобрений, содержащих йод, может удвоить и утроить его содержание в сельскохозяйственных культурах. Медицинские препараты, содержащие йод, обладают антибактериальными и противогрибковыми свойствами, они оказывают также противовоспалительное и отвлекающее действие; их применяют наружно для обеззараживания ран, подготовки операционного поля. Малые дозы йода (микройод) тормозят функцию щитовидной железы, действуя на образование тиреотропного гормона передних долей гипофиза. Поскольку йод влияет на белковый и жировой (липидный) обмен, он нашел применение при лечении атеросклероза, так как снижает содержание холестерина в крови; повышает также фибринолитическую активность крови. Искусственно радиоактивные изотопы йода - 125I, 131I, 132I и другие широко используются в биологии и, особенно в медицине для определения функционального состояния щитовидной железы и лечения ряда её заболеваний. Применение радиоактивного йода в диагностике связано со способностью йода избирательно накапливаться в щитовидной железе; использование в лечебных целях основано на способности b-излучения радиоизотопов йода разрушать секреторные клетки железы. При загрязнениях окружающей среды продуктами ядерного деления радиоактивные изотопы йода быстро включаются в биологический круговорот, попадая, в конечном счете, в молоко и, следовательно, в организм человека. Особенно опасно их проникновение в организм детей, щитовидная железа которых в 10 раз меньше, чем у взрослых людей и к тому же обладает большей радиочувствительностью. С целью уменьшения отложения радиоактивных изотопов йода в щитовидной железе рекомендуется применять препараты стабильного И. (по 100 - 200 мг на прием). Радиоактивный йод быстро и полностью всасывается в желудочно-кишечном тракте и избирательно откладывается в щитовидной железе. Его поглощение зависит от функционального состояния железы.

5.КОБАЛЬТ

(лат. Cobaltum). Название металла произошло от немецкого Kobold(домовой, гном). Соединения кобальта были известны и применялись в глубокой древности. Сохранился египетский стеклянный кувшин, относящийся к ХV в. до н.э., окрашенный солями кобальта, а также голубые стекловидные кирпичи, содержащие кобальт. В древней Ассирии, а также в Вавилоне из кобальта изготовляли лазурит - голубую краску, которой обливали керамические изделия. Исходным материалом для получения кобальтовых соединений служил тогда цаффер (Zaffer)-сапфир, содержащий висмут и кобальт; откуда и произошли названия красок - сафлор, шафран и др. В средние века горняки находили, вместе с другими рудами кобальтовую "землю", но не знали, что с ней делать. Иногда эта земля была похожа на серебряную руду, но не содержала никакого серебра. В средние века немецкие горняки желая подчеркнуть свойства кобальтовых земель, называли их кобольд - подземный гном, насмешливый дух, бессовестный плут. Кобальт упоминается у Бирингуччо, Василия Валентина, Парацельса и других авторов XV-XVII вв. В "Алхимическом лексиконе" Руланда (1612) о кобальте говорится: “Кобол, кобальт (Koboltum, Kobaltum) или коллет (Colletum)-металлическая материя, чернее свинца и железа, растягивающаяся при нагревании”. Кобальт - черная, немного похожая по цвету на золу материя, которую можно ковать и лить, но она не обладает металлическим блеском, и которая представляет собой вредную взвесь, уводящую (при плавке) вместе с дымом хорошую руду. Тем не менее в истории химии принято считать, что металлический кобальт был впервые описан в 1735 г. профессором Брандтом. В диссертации "О полуметаллах" Брандт указывает, что получаемый из руд металлический висмут не представляет собой чистого металла, а содержит "кобальтовый королек" (металлический кобальт). Он же выяснил, что соли кобальта окрашивают стекла в синий цвет. В чистом виде металлический кобальт был получен Верцелиусом. В русской литературе XVIII и начала XIX в. встречаются названия кобольт, коболт (Соловьев и Страхов, 1824 и в более ранних сочинениях по химии). Двигубский (1824) употребляет название кобальт; в дальнейшем оно становится общепринятым. Его плотность составляет 8,9 г/см3, температура плавления - 1494 °С, он обладает ферромагнитными свойствами (точка Кюри 1121 °С).При обычной температуре на воздухе химически стоек. По химическому составу различают три основных типа кобальтовых руд: мышьяковые руды, сернистые и окисленные. Из 1 тонны руды получают от 1 до 30 кг кобальта. Среди металлов подгруппы железа кобальт самый редкий; содержание его в земной коре не превышает тысячной доли процента. Общие мировые запасы оценивают в 6 млн. т, причем большая их часть сосредоточена в зарубежных странах: Заире, Марокко, Замбии и др. В России крупнейшим месторождением кобальтовых руд является Норильское, а из республик бывшего СССР значительными запасами обладает Азербайджан. В химической промышленности металл применяется главным образом в качестве катализатора различных химических процессов. Соли кобальта добавляют в краски и лаки для ускорения процесса их высыхания. Кобальт имеет значительное биологическое значение, он относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах и в растениях связано развитие малокровия у животных. Входя в состав водорастворимого витамина В12 , кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты. Этот витамин влияет на углеводный и жировой обмен; участвует в кроветворении. В микродозах кобальт является необходимым элементом для нормальной жизнедеятельности многих растений и животных. Вместе с тем повышенные концентрации соединений кобальта являются токсичными. В настоящее время остро стоит проблема загрязнения окружающей среды солями тяжелых металлов.


Информация о работе «История открытия элементов»
Раздел: Химия
Количество знаков с пробелами: 40174
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
57399
0
1

... Гадолина - первого исследователя минерала иттербита. Элемент, содержащийся в гадолиниевой земле (Gadolinia), получил название гадолиний (Gadolinium); в чистом виде он получен в 1896 г. Тербий, Terbium, Тb (65) История открытия этого элемента довольно запутана. Она начинается с черного минерала, найденного в 1788 г. близ деревни Иттерби в Швеции и получившего название гадолинита. В 1797 г. ...

Скачать
35976
1
10

... кристаллов Сейчас известно уже около сотни тысяч органических веществ, которые могут находиться в ЖК-состоянии, и число таких соединений непрерывно растет. Если первые десятилетия после открытия жидких кристаллов основными представителями этих соединений являлись только вещества, состоящие из асимметрических молекул стержнеобразной формы, — так называемые каламитики (от греч. "каламис" — тростник ...

Скачать
38955
0
0

... », хорошо передававшими форму, пропорции, цвет и объем изображаемых объектов. Самые яркие образцы такого первобытного искусства были обнаружены в пещерах Южной Франции и Северной Испании. Они в первую очередь и вошли в Список Всемирного наследия. Истории человечества известен ряд последовательно сменяющих друг друга общественно экономических формаций: первобытнообщинная, рабовладельческая, ...

Скачать
38955
0
0

... художники. Они имели вид каменных плошек, изготовленных в технике пикетажа. В плошки наливали жир и клали фитиль. Они были обнаружены в Костенках, Мезине и Межирилах. Открытия памятников пещерного искусства. Впервые наскальная живопись была открыта лишь в конце XIX века. В 1868 году в Испании, в провинции Саятандер, близ Сантильяна-дель-Мар, охотник за козами обнаружил пещеру, вход в которую ...

0 комментариев


Наверх