Кислотно-основные индикаторы, ионно-хромофорная теория, основные характеристики, правила выбора, индикаторные погрешности кислотно-основного метода и их расчет

Рассчитанные параметры протолитических ТКТ (величина скачка титрования, pH в ТЭ) позволяют подобрать наиболее подходящие для обнаружения КТТ (МЭ) кислотно-основные индикаторы.

Кислотно-основные индикаторы в большинстве случаев представляют собой растворимые сложные органические соединения, способные изменять собственную окраску в зависимости от pH раствора. По химической природе они являются слабыми кислотами или основаниями, частично диссоциирующими в растворе по уравнению

HInd H++Ind - или IndOH Ind++OH-.

Цветопеременность кислотно-основных индикаторов ионная теория Оствальда объясняет различием цвета их недиссоциированных молекул и образуемых ионов, а зависимость окраски от pH среды связывает со смещением равновесия в реакции диссоциации с изменением кислотности среды, в результате чего раствор приобретает окраску молекулярной или ионной формы индикатора.

Более современной хромофорной теорией изменение цвета кислотно-основных индикаторов в зависимости от pH их раствора объясняется происходящей при этом внутри молекулярной перегруппировкой с образованием окрашенных форм. Своё название эта теория получила от названия особых атомных групп (обычно с двойными связями) - хромофоров (от греческого "цветонесущие"), наличию которых в молекулах приписывается окраска органических соединений.

К хромофорам относят азогруппу - NN-, нитрогруппу - NO2, нитрозогруппу - NO, карбонильную =CO, хиноидную = = = и др. Углублению окраски способствуют другие группы - ауксихромы (от греческого "усиливающие цвет"). К ним относят группы - NH2, - OH и их производные, содержащие радикалы - OCH3, - N(CH3) 2, - N(C2H5) 2 и др.

Например, структурные изменения индикатора метилового оранжевого с изменением pH можно представить схемой

Аналогично для фенолфталеина:

HInd - форма (бесцветная) Ind - форма (малиновая)

Ионная и хромофорная теории дополняют друг друга и вместе образуют ионно-хромофорную.

Наблюдаемый переход окраски одной окрашенной формы кислотно-основного индикатора в другую происходит не при строго определенном значении pH, а в интервале изменения от pH1 до pH2, называемом интервалом перехода окраски индикатора.

Границы этого интервала pH1 и pH2 можно рассчитать, зная константу диссоциации индикатора K (HInd):

K(HInd) = .

Опытным путем установлено, что изменение окраски индикатора становится визуально видимым (отличным) при соотношении  или  Подставив данное соотношение в выражение для K(HJnd), получим

K(HInd) = ,

откуда [H+] = K(HInd) 10 или K(HInd) /10.

pH = pK(HInd) + 1 или pK(HInd) - 1.

Формула pH = pK(Ind) ± 1 используется для расчета границ интервала перехода окраски любого кислотно-основного индикатора.

Значение pH, при котором индикатор наиболее отчетливо изменяет свою окраску, называется показателем титрования и обозначается pT. Для большинства практических случаев

pT=

Момент окончания титрования соответствует достижению pH титруемого раствора, равного pT, отличается от pH в момент эквивалентности: чем ближе pT индикатора к pH в ТЭ, тем точнее будет результат анализа. Поэтому правильный выбор индикатора является одним из наиболее важных моментов в объемно-аналитических определениях.

Правильный выбор индикатора проводят по ТКТ. Он зависит от типа ТКТ, pH в ТЭ, величины скачка титрования, а также природы и свойств индикатора (pT, pH1pH2). При выборе следует руководствоваться следующими правилами:

предпочтение следует отдавать индикатору, у которого pT наиболее близок к рН в ТЭ;

величина интервала перехода окраски индикатора должна полностью или частично входить в скачок титрования;

при титровании слабых кислот нельзя применять индикаторы с интервалами перехода, лежащими в кислой области, а при титровании слабых оснований - в щелочной;

при титровании сильных кислот и сильных оснований можно применять практически любые индикаторы, однако при титровании разбавленных электролитов с c(1/zX) <0,01 моль/дм3 следует придерживаться второго правила: ток как скачок титрования становится малым.

Практически никогда не удается подобрать индикатор, у которого рТ совпадал бы с рН в ТЭ, поэтому чаще всего изменение окраски индикатора происходит до или после МЭ. В первом случае раствор будет недотитрован, а во втором - перетитрован.

Это приводит к погрешностям, называемым индикаторными погрешносттями титрования. Они выражают молярную долю неоттитрованной или перетитрованной кислоты или основания. Классификация, причины и расчетные формулы индикаторных погрешностей приведены в табл.1.8.1. Рассмотрим выводы формул индикаторных погрешностей.

Таблица 1.8.1

Типы индикаторных погрешностей

Тип погрешности Причина погрешности Расчетная формула погрешности,%
Водородная Избыток ионов Н+ вследствие недотитрования сильной кислоты или перетитрования основания (сильного или слабого) сильной кислотой

∆H+ =

Гидроксильная Избыток ионов ОН - вследсвие недотитрования сильного основания или перетитрования кислоты (слабой или сильной) сильным основанием

∆ОН-=

Кислотная Избыток молекул слабой кислоты НА при её недотитровании

∆НА =

Щелочная Избыток молекул слабого основания MOH при его недотитровании

∆МОН=

где V1 и V2 - объемы анализируемого раствора до и после титрования; с - молярная концентрация эквивалента вещества анализируемого раствора; рК - показатель константы диссоциации слабого электролита; рТ - показатель титрования индикатора; V1/V2=2, если концентрации титранта и анализируемого раствора равны.


Информация о работе «Кислотно-основные индикаторы»
Раздел: Химия
Количество знаков с пробелами: 11249
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
18035
1
0

... титрование не сопровождается внешним эффектом, например, изменением окраски, для фиксирования точки эквивалентности применяют индикаторы. 1.2 Индикаторы в кислотно-основном титровании титрование осадительный тицианометрия индикатор Индикаторы кислотно-основного титрования представляют собой слабые органические кислоты и основания, у которых молекулярная и ионная формы отличаются окраской. В ...

Скачать
15526
1
0

... с увеличением концентраций реагирующих веществ, величины константы устойчивости комплексоната и температуры. Комплексонаты ЭДТА с ионами металлов - бесцветные cоединения, как и ЭДТА, поэтому ТЭ комплексонометрического титрования фиксируют с помощью индикаторов. Для этих целей можно использовать кислотно-основные индикаторы, оттитровывая в их присутствии щелочью ионы водорода, образовавшиеся при ...

Скачать
16870
0
0

... титрования на ТКТ позволяет сделать заключение о возможности регистрации ТЭ в реальном титровании при аналогичных расчетным концентрациях, а также выбрать индикатор и оценить погрешность титрования с ним. У правильно выбранного индикатора переход окраски должен происходить в интервале изменения свойств титруемого раствора, отвечающего скачку титрования. Индикаторная погрешность титрования может ...

Скачать
25741
0
2

... гг. - Галилео Галилей сконструировал гидростатические весы для определения плотности твердых тел (1586), изобрел термометр (1592). 1660 - 65 гг. - Роберт Бойль в книге "Химик-скептик" сформулировал основную задачу химии (исследование состава различных тел, поиск новых элементов), развил представление о понятии "химический элемент" и подчеркнул важность экспериментального метода в химии. Он ввел ...

0 комментариев


Наверх