1. Водородная погрешность (∆H+).

Пусть она является результатом недотитрования сильной кислоты НА сильным основанием МОН в присутствии некоторого индикатора с показателем титрования рТ.

По определению ,%,

где n(HA) неот и n(HA) от - количества вещества не оттитрованной и оттитрованной кислоты в КТТ. Так как n(HA) от >> n(HA) неот, то величиной n(HA) неот в знаменателе можно пренебречь, тогда

.

В КТТ рН = рТ, т.е. [H+] = 10-pT, следовательно, в этот момент c(HA) неот = [H+] КТТ = 10-pT; обозначим c(HA) от ≈ c(HA) исх = с(HA), V(HA) неот = V(HA) исх+V(MOH) ККТ = V2, а V(HA) от≈V(HA) исх=V1.

Подставим полученное в формулу для ∆H+:

,%.

Если c(HA) = c(MOH), то V2 = 2V1 и

,%.

2. Гидроксильная погрешность (∆ОН_).

Пусть она является результатом недотитрования сильного основания MOH сильной кислотой НА в присутствии индикатора с показателем титрования рТ.

По определению ,%

В КТТ n(MOH) от >> n(MOH) неот, следовательно, n(MOH) неот в знаменателе можно пренебречь тогда

,%.

В КТТ с(MOH) неот= [OH-] КТТ, а

Так как с(MOH) от ≈ с(MOH) исх = с(MOH);

V(MOH) неот = V(MOH) исх + V(HА) КТТ = V2;

V(MOH) от = V(MOH) исх = V1, оттуда после подстановки получим:

.

Если с(MOH) = с(НА), то V2 = 2V1, следовательно,

.

3. Кислотная погрешность (∆НА).

Пусть она является результатом недотитрования слабой кислоты НА сильным основанием МОН с индикатором с показателем титрования рТ, тогда ,%.

В КТТ [HA] от = [MA] = [A-], следовательно,

,%.

Из выражения для К(НА) получим , но поскольку в КТТ [H+] = 10-pT, а К(НА) = 10-pK, то

,

откуда после подстановки

.

4. Щелочная погрешность (∆МОН).

Пусть она является результатом недотитрования слабого основания МОН сильной кислотой НА с индикатором с показателем рТ, тогда

.

В КТТ [МОH] от = [MA] = [М+], следовательно,

.

Из выражения для К(МОН) получим

но поскольку в КТТ

[H+] = 10-pT, а  KW =10-14, K(MOH) = 10-pK,

то ,

откуда после подстановки .

Прямым титрованием в протолиметрии определяют концентрацию кислоты или основания, или содержание элементов, образующих растворимые кислоты и основания (например фосфора в виде фосфорной кислоты и т.п.). Обратным или косвенным титрованием находят содержание некоторых солей. Например, для определения содержания NH4+ в NH4Cl обратным титрованием можно добавить к анализируемому раствору точно отмеренный избыток стандартного раствора NaOH, нагреть смесь до полного удаления NH3, а затем остаток раствора NaOH оттитровать кислотой в присутствии метилового оранжевого. Косвенный вариант титрования NH4+ можно осуществить формальдегидным методом, заместив ионы NH4+ эквивалентным количеством Н+ - ионов реакцией раствора NH4Cl с избытком формальдегида по реакции

NH4Cl + 6CH2O  (CH2) 6N4 + HCl + 6H2O

Содержание NH4+ находят по результатам алкалиметрического титрования заместителя, т.е. HCl.

Протолиметрическое титрование в основном проводят в водной среде, но существует и неводный вариант. В последнем случае, подобрав соответствующий растворитель, можно направленно изменять силу растворенных в нем кислот и оснований, превращать соли в кислоты и основания и т.д. Например, HCN в водном растворе - слабая кислота, а в среде сжиженного аммиака - сильная, мочевина в растворе безводной СН3СООН - сильное основание, а в сжиженном аммиаке - кислота и т.п. Поэтому применение неводного титрования делает возможным титрование очень слабых кислот и оснований, различных смесей солей с близкими свойствами, смесей солей с кислотами и основаниями, определение нерастворимых в воде и разлагаемых ею соединений.

В зависимости от относительной силы кислот и оснований различают четыре основных случая протолиметрического титрования, каждый из которых моделируется соответствующей ТКТ: I - сильную кислоту титруют сильным основанием; II - сильное основание титруют сильной кислотой; III - слабую кислоту титруют сильным основанием; IV - слабое основание титруют сильной кислотой.

Кислоты и основания с Кдис >10-2 считаются сильными, и для них ТКТ рассчитывают по типу  - , кроме точки эквивалентности, в которой рН находят как для слабых кислот или оснований.

Титрование слабых кислот так же, как и титрование слабых оснований, возможно только при условии, если их Кдис  10-7…10-8. При Кдис  10-9 скачок титрования на ТКТ отсутствует и зафиксировать ТЭ в реальном титровании невозможно.

Выбор индикатора и расчет индикаторной погрешности рассмотрим на примере решения следующей задачи.

Задача: определите тип и величину индикаторной погрешности при титровании муравьиной кислоты с с(НСООН) = 0,1 моль/дм3 раствором NaOH c c(NaOH) = 0,1 моль/дм3 в присутствии метилового оранжевого и фенолфталеина. Сделайте заключение о возможности применения данных индикаторов, если рНТЭ = 8,22, рТМ0 = 4, рТффт = 9, рК(НСООН) = 3,75.

Решение:

а) титрование с метиловым оранжевым.

Титруем кислоту, следовательно, в процессе титрования рН раствора растет. Тип индикаторной погрешности определим с помощью графической схемы титрования.

КТТ

4,0 8,22 рН

рТМО рНТЭ

Из схемы следует, что титрование с данным индикатором закончим до ТЭ, недотитровав слабую кислоту. Это приведет к кислотной погрешности титрования

∆НА =

Вывод: погрешность с данным индикатором недопустимо велика, индикатор метиловый оранжевый не пригоден для титрования.

б) титрование с фенолфталеином

КТТ

8,22 9,0 рН

рНТЭрТффт

Из схемы следует, что в КТТ раствор кислоты будет перетитрован сильным основанием, т.е. будет содержать избыток ОН - ионов. Это приведет к гидроксильной погрешности.

∆ОН - =

Вывод: индикаторная погрешность при титровании с фенолфталеином меньше допустимой (0,1%), следовательно, данный индикатор можно использовать.


Информация о работе «Кислотно-основные индикаторы»
Раздел: Химия
Количество знаков с пробелами: 11249
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
18035
1
0

... титрование не сопровождается внешним эффектом, например, изменением окраски, для фиксирования точки эквивалентности применяют индикаторы. 1.2 Индикаторы в кислотно-основном титровании титрование осадительный тицианометрия индикатор Индикаторы кислотно-основного титрования представляют собой слабые органические кислоты и основания, у которых молекулярная и ионная формы отличаются окраской. В ...

Скачать
15526
1
0

... с увеличением концентраций реагирующих веществ, величины константы устойчивости комплексоната и температуры. Комплексонаты ЭДТА с ионами металлов - бесцветные cоединения, как и ЭДТА, поэтому ТЭ комплексонометрического титрования фиксируют с помощью индикаторов. Для этих целей можно использовать кислотно-основные индикаторы, оттитровывая в их присутствии щелочью ионы водорода, образовавшиеся при ...

Скачать
16870
0
0

... титрования на ТКТ позволяет сделать заключение о возможности регистрации ТЭ в реальном титровании при аналогичных расчетным концентрациях, а также выбрать индикатор и оценить погрешность титрования с ним. У правильно выбранного индикатора переход окраски должен происходить в интервале изменения свойств титруемого раствора, отвечающего скачку титрования. Индикаторная погрешность титрования может ...

Скачать
25741
0
2

... гг. - Галилео Галилей сконструировал гидростатические весы для определения плотности твердых тел (1586), изобрел термометр (1592). 1660 - 65 гг. - Роберт Бойль в книге "Химик-скептик" сформулировал основную задачу химии (исследование состава различных тел, поиск новых элементов), развил представление о понятии "химический элемент" и подчеркнул важность экспериментального метода в химии. Он ввел ...

0 комментариев


Наверх