4. Ферменты (гомогенные и гетерогенные).
Ферменты (энзимы) – биологические катализаторы обладают уникальными свойствами: высокой производительностью в расчете на один реакционный центр и селективностью, связанной со специфичностью действия. Работают ферменты в очень мягких условиях, при атмосферном давлении и температуре до 40о. В биологических системах отсутствуют неводные растворители и сильные кислоты и основания ( рН ≈ 7 ). Например фермент уреаза гидролизует только молекулы мочевины, не обращая внимания на другие амиды, и делает это гораздо эффективнее обычных кислотных катализаторов (табл. ).
Таблица
Реакция и субстрат | Катализатор | Константа ско-рости второго по-рядка, моль-1∙с-1 | Температура, оС |
Гидролиз сложных эфиров Этилбензоат Этиловый эфир N-бензоил-L-тирозина | Н3О+ Химотрипсин | 9,0∙10-5 1,9∙104 | 54 25 |
Гидролиз аденозин-трифосфата (АТФ ) | Н3О+ Миозин | 4,7∙10-6 8,2∙106 | 40 25 |
Гидролиз амидов Бензамид Амид N-бензоил- L-тирозина Мочевина | Н3О+ Химотрипсин Н3О+ Уреаза | 2,4∙10-6 14,9 7,4∙10-6 5,0∙106 | 52 25 62 21 |
II. Классификация катализаторов по степени дискретности и коллективности действия
Взаимодействие катализатора с реагентами в газовой и жидкой фазе носит в основном дискретный характер (взаимодействие с одним реакционным центром катализатора) (гомогенный катализ). Взаимодействие реагентов с активными центрами на поверхности гетерогенного катализатора подвергается влиянию специфических эффектов твердого тела (большое количество ядер и электронов). Здесь главную роль играют коллективные эффекты. Поэтому катализаторы можно классифицировать по степени дискретности.
Коллективные эффекты выражены сильно в: а) массивных металлах, б) твердых растворах (сплавах).
Коллективные эффекты выражены слабее в: а) полупроводниковых оксидах, б) солях металлов в кристаллическом состоянии (HgCl2, MoS2, PdCl2, CuCl).
Дискретные свойства выражены сильно в: а) кислотных катализаторах в растворах, б) комплексах металлов в растворах, в) комплексах металлов, химически связанных с поверхностью носителя.
Фактически в ряду металлы → оксиды металлов → кислотные катализаторы и комплексные соединения происходит уменьшение влияния коллективных эффектов и увеличение влияния дискретных свойств. Такое деление не полностью совпадает с делением на гомогенные и гетерогенные катализаторы.
III. Классификация по специфике электронного строения
1. d–Катализаторы – катализаторы на основе переходных металлов, имеющие d–электроны и энергетически выгодные d–орбитали.
2. s,p-Катализаторы – катализаторы, в активном центре которых находится элемент, имеющий валентные S и P – орбитали(электроны). Это протонные и апротонные кислоты (НХ, RX, R+, BF3, оксиды алюминия, алюмосиликаты), а также основания Бренстеда (O, N, S, P, Hal – содержащие ионы и молекулы.
Металлы побочных подгрупп I и II групп Периодической системы относятся к промежуточному типу.
Группа d–катализаторов обладает несомненно более широким спектром каталитического действия из-за большего числа энергетически доступных орбиталей:
(n-1) d, n s, n p и электронов, участвующих в элементарных стадиях каталитических процессов.
Из группы d-катализаторов особенно широким спектром каталитических свойств обладают металлокомплексные катализаторы (как в растворах, так и на поверхности). Именно исследование металлокомплексных катализаторов позволило установить механизм многих каталитических процессов на “молекулярном уровне”.
Особенно следует отметить, что появление металлокластерных катализаторов позволило "перебросить мостик" между металлокомплексными катализаторами в растворе и гетерогенными катализаторами на носителе.
Фактически кластерные катализаторы сочетают в себе
- с одной стороны – свойства дискретной молекулы, дополненные взаимодействием между металлами на молекулярном уровне,
- с другой стороны – свойства ансамбля из атомов металла, ограниченные рамками одной молекулы.
Представления о том, как происходит превращение субстрата (или нескольких субстратов) на поверхности катализатора и является главным подходом к пониманию механизма каталитических процессов.
Но, фактически, такие превращения – это превращения, протекающие в координационной сфере атома металла и они подчиняются всем закономерностям, которые наблюдаются в координационной химии.
Поэтому, прежде чем обсуждать механизмы активации молекул катализатором (что, собственно говоря, и является “интимным” механизмом катализа), необходимо вспомнить основные понятия координационной химии
оловина – катализаторы каталитического крекинга. Потребности химической промышленности – около одной трети, экологии – десятая часть. Если средняя стоимость катализаторов – 4$ за килограмм, а средняя доля в себестоимости – 0,3%, то с помощью катализаторов производят продуктов на сумму не менее 1000 миллиардов $. Катализ позволяет экономить сырье и энергию, а также не загрязнять окружающую среду. ...
... подразумевают упорядоченную связь и взаимодействие между элементами системы, благодаря которой и возникают новые целостные свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия составляющих ее атомов определяет свойства молекулы. 3.2 «Триумфальное шествие органического синтеза» Возникновение структурной теории позволило химикам впервые обрести ...
... укреплению отверстий не требуется. Из приведенного расчета – следует что дополнительного укрепления отверстия не требуется. 6. КРАТКАЯ ХАРАКТЕРИСТИКА технологического оборудования Производство катализатора дегидрирования КИМ-1 осуществляется на территории цеха № 2410 завода «Окиси этилена» ОАО «Нижнекамскнефтехим» с использованием действующего технологического оборудования для приготовления ...
... и реакторного блока На глубину конверсии сырья в значительной степени оказывает влияние газодинамический режим контактирования сырья с катализатором, осуществляемый в реакторах различных типов. В реакторах с псевдоожиженным (кипящим) слоем микросферического катализатора катализ, тепло- и массообмен осуществляются при идеальном перемешивании реактантов с катализатором. Как наиболее значимые ...
0 комментариев