3.    Критерий смачивания

В=cosи (6)

4.    Из формулы

B = (2 Wа - Wc)/ Wc (7)

следует, что чем больше разница между работой адгезии и работой когезии данной жидкости в отношении данного вещества, тем лучше данная жидкость смачивает данное вещество. Это означает, что жидкость будет хорошо смачивать вещество, если энергия взаимодействия молекул жидкости между собой меньше энергии взаимодействия молекул жидкости и твёрдой поверхности

Адсорбция

1.    Адсорбция – это концентрирование вещества на границе раздела фаз в результате его самопроизвольного перехода данного вещества из объёма фазы. Адсорбционное равновесие определяется притяжением молекул к поверхности другой фазы и тепловым движением, стремящимся восстановить равенство концентраций в поверхностном слое и объёме фазы

2.    Наблюдается адсорбция на поверхностях раздела следующих фаз: твёрдое вещество-жидкость, твёрдое вещество-газ, жидкость-жидкость, жидкость-газ. Адсорбент – твёрдое вещество, на поверхности которого происходит адсорбция. Адсорбтив (адсорбат) – вещество, концентрирующееся на границе раздела фаз

3.    Адсорбция – частный случай сорбции. Если на границе раздела фаз вещество поглощается в результате образования химических соединений, это хемосорбция. Если вещество поглощается объёмом другой фазы, это абсорбция

4.    Различают два случая адсорбции: адсорбция на твёрдой поверхности и адсорбция в поверхностном слое жидкости.

Адсорбция на однородной плоской поверхности раздела

фаз – в поверхностном слое жидкостей.

1.    Данный процесс описывается уравнением изотермы адсорбции Гиббса

2.    При контакте двух жидких фаз образуется межфазная область, толщина которой соответствует молекулярным размерам. Та как её измерить невозможно, для устранения неопределённости вводится условная разделяющая поверхность с площадью O

3.    Тогда поверхностная энергия системы равна

G(s) = уO + ∑мini(s) (8)

4.         Путём расчётов получаем

dу = -еdT - ∑Гii (9)

5.    При дальнейших расчётах исходить из предположения, что адсорбция растворителя отсутствует

6.    Уравнение изотермы адсорбции Гиббса Гi = -(ai/RT)(dу/dai), Гi – избыточное количество вещества i, отнесённое к единичной поверхности, ai – его активность

7.    Экспериментальные данные дают хорошее качественное согласие с уравнением изотермы адсорбции Гиббса, повышение точности измерений подтверждает справедливость данного уравнения

(рис.1, 2)

8.         На рисунке справа изображена изотерма адсорбции поверхностно-активного вещества на границе раствор-пар, Г – число молей поверхностно-активного вещества в поверхностном слое, Г0 – максимально возможная концентрация поверхностно-активного вещества в поверхностном слое, на рисунке слева изображены изотермы поверхностного натяжения ПАВ (1, 2) и поверхностно-инактивного вещества/

Поверхностно-активные вещества. Правило Дюкло-Траубе

Поверхностно-активные вещества ПАВ – это вещества, способные концентрироваться на поверхности раздела фаз и понижать поверхностное натяжение жидкости. Направление процесса (концентрирования вещества в поверхностном слое фазы или выход его оттуда) определяется знаком dу/dc. Если c~a, то значению >0 соответствует отрицательная адсорбция, dу/dc<0 – положительная адсорбция. Поверхностная активность

G = - dу/dc (10)

при с→0 – адсорбция поверхностно-активных веществ положительна, адсорбция жидкостей – адсорбатов, имеющих большее поверхностное натяжение, чем у адсорбента, отрицательна.

Большинство поверхностно-активных веществ, меняющих поверхностное натяжение воды, имеет общую структуру: в молекуле содержатся гидрофильная головка и гидрофобный хвост.

(рис.3)

При взаимодействии с водой гидрофильная головка оказывается сильно гидратированной, а гидрофобный хвост выталкивается наружу. Образуется мономолекулярный слой поверхностно-активного вещества на поверхности воды.


(рис.4)

Правило Дюкло-Траубе: при увеличении числа углеродных атомов в гомологическом ряду в арифметической прогрессии поверхностная активность вещества возрастает в геометрической прогрессии.

Адсорбция на твёрдой поверхности

Мономолекулярная адсорбция на твёрдой поверхности

Уравнение изотермы Ленгмюра

Основные положения теории Ленгмюра:

1.    Адсорбция – процесс локализованный, она вызвана силами, близкими к химическим

2.    Адсорбция протекает не на всей поверхности адсорбента, а в активных центрах

3.    Каждый активный центр взаимодействует с одной молекулой адсорбата, в результате чего на поверхности адсорбента образуется один слой адсорбированных молекул

4.    Адсорбция – процесс обратимый и равновесный

При адсорбционном равновесии скорость адсорбции равна скорости десорбции, она пропорциональна числу ударов молекул адсробтива о поверхность адсорбента, незанятую адсорбированными молекулами. Она равна

Wa = ka(1 – и)p (11)

ka – коэффициент пропорциональности, и – доля поверхности, покрытой адсорбированными молекулами, (1 – и) – доля свободной для адсорбции поверхности адсорбента.

Скорость десорбции:

Wд = kдни (11)

kд – коэффициент пропорциональности, н – число молекул на 1 м2 при максимальной упаковке.

Так как скорости процессов адсорбции и ресорбции равны, эти уравнения можно приравнять друг другу, и решением полученного уравнения относительно и будет

и = Kp/(1+Kp), K = ka/( kдн) (12)

Исходя из того, что число адсорбированных молекул на единице поверхности равно ин, то количество молей A на единицу поверхности равно

A = ин/NA (13)

Максимальная адсорбция:

A = н/ NA (14)

Тогда уравнение изотермы адсорбции Ленгмюра, связывающее адсорбцию с давлением газа над адсорбентом имеет вид:

A = A Kp/(1+Kp) (15)

Аналогичным путём выводится уравнение изотермы адсорбции Ленгмюра, связывающее адсорбцию с концентрацией:

Г = Гₒ C/(C+b) (16),

С – равновесная концентрация адсорбируемого вещества в растворе.

(рис.5)

На рисунке приведена изотерма мономолекулярной адсорбции [2].

Полимолекулярная адсорбция. Уравнение БЭТ

Многие изотермы адсорбции имеют форму, отличную от изотермы адсорбции Ленгмюра. Пример: S-образные кривые, часто наблюдаемые при адсорбции паров:

Изотерма полимолекулярной адсорбции

(рис.6)

С. Брунауэр, П. Эммет, Дж. Теллер предложили теорию, по которой молекулы из газовой фазы могут адсорбироваться поверх уже адсорбированных молекул (Харкинс предложил ей название «теория БЭТ» по первым буквам фамилий авторов). Авторы принимали теорию Ленгмюра о динамическом характере адсорбционного равновесия и справедливость уравнения Ленгмюра для каждого адсорбционного слоя. Уравнение изотермы адсорбции БЭТ:

y/V(1 – y) = 1/CVm + (C – 1)y/VmC (17)

Уравнение изотермы адсорбции Фрейндлиха

Теория Ленгмюра даёт нам идеальную картину процесса адсорбции. С учётом разности расстояний между активными центрами, зависимости их друг от друга, взаимодействий между адсорбированными молекулами и т.д. вид изотермы адсорбции усложняется.

(рис.7) (рис.8)

Г. Фрейндлих показал, что при T = const удельная адсорбция (число молей адсорбированного газа или растворённого вещества, приходящееся на единицу массы адсорбента), обозначаемая x/m, пропорциональна равновесному давлению (для газов) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбируемого вещества, возведённым в степень меньше единицы.

x/m = aCn, x/m = aPn (18)

На рис.7 изображена изотерма адсорбции Фрейндлиха в обычных координатах, на рис.8 – в логарифмических.

Вид изотерм адсорбции по классификации БДДТ

(рис.9)

I – изотерма, описываемая уравнением Ленгмюра

II – формирование полислоя на поверхности с высоким адсорбционным потенциалом

III – образование полислоя из газовой среды на твёрдом адсорбенте. Справедлива для тел, потенциал монослоя которых мал и имеет тот же порядок, что и теплота конденсации адсорбтива

IV, V – аналогичны типам II и III для пористых сорбентов, где адсорбция ограничивается объёмом мезопор, петля гистерезиса соответствует дополнительному поглощению пара в результате капиллярной адсорбции.

Ионная адсорбция. Иониты

При адсорбции ионов из раствора адсорбируется чаще всего один тип ионов. Адсорбция может проходить по двум механизмам:

1.         Обменная адсорбция. При этом вместо ионов, адсорбируемых из раствора твёрдой фазой, из твёрдой фазы выделяется эквивалентное количество ионов того же знака. Примером такой адсорбции является адсорбция ионов солей ионитами (например, ионообменными смолами).

Иониты – это высокомолекулярные соединения, при диссоциации выделяющие в воду большое количество одноатомных ионов и высокомолекулярный ион противоположного знака. По типу выделяемых ионов они делятся на 2 класса: катиониты и аниониты. При диссоциации катионитов образуется высокомолекулярный анион, в воду выделяется множество катионов. При диссоциации анионитов, соответственно, происходит выделение в воду анионов.

По структуре иониты различают гелевые и макропористые. Гелевые иониты состоят из связанных между собой полимерных цепей. Для осуществления реакции ионного обмена они должны набухнуть. Набухание – это процесс проникновения растворителя в пространство между полимерными цепями ионита. Этот процесс занимает достаточно длительное время, поэтому в практической деятельности чаще применяются макропористые иониты. Их получают, проводя синтез полимера в присутствии соответствующего растворителя. После синтеза растворитель отмывают или отгоняют.

Процесс ионного обмена выглядит следующим образом. Вначале ион, содержащийся в растворе – он называется вытесняющий ион – попадает на поверхность ионита, потом диффундирует в объём ионита туда, где происходит акт обмена. Вытесняемый ион диффундирует из объёма ионита к его поверхности и переходит в раствор.


(рис.9)

2.    Специфическая адсорбция заключается в поглощении твёрдой фазой ионов, достраивающих её кристаллическую решётку. При этом вокруг фазы образуется слой противоионов. Формируется двойной электрический слой.

Строение двойного электрического слоя наиболее точно описывается современной теорией Штерна:

1.    Поверхность твёрдой фазы адсорбирует ионы, достраивающие её кристаллическую решётку – потенциалопределяющие ионы

2.    Адсорбционные силы принимают участие и в образовании первого слоя противоионов – адсорбционного слоя. Ионы этого слоя притягиваются к заряженной поверхности твёрдой фазы электростатическими силами и затем адсорбируются

3.    За адсорбционным слоем образуется диффузный слой противоионов. Количество ионов в нём такое, что они полностью нейтрализуют оставшийся противоположный заряд потенциалопределяющих ионов

(рис.10)

Потенциал диффузного слоя (ж-потенциал) – это электрокинетический потенциал коллоидной частицы, величина которого имеет большое значение во многих явлениях в коллоидах.

Двойной электрический слой стабилизирует мицеллы – частицы, составляющие дисперсную фазу гидрозолей.

Хроматография

Это разделение веществ в результате сорбционных процессов при движении одной из фаз. Динамическая сорбция в хроматографии осуществляется двумя способами:


Информация о работе «Коллоидная химия и поверхностные явления»
Раздел: Химия
Количество знаков с пробелами: 25685
Количество таблиц: 1
Количество изображений: 9

Похожие работы

Скачать
191966
8
41

... или кислот; так получают, например, золь гидроксида железа(III), имеющий следующее строение: {[Fe(OH)3]m n FeO+ · (n–x)Cl–}x+ x Cl– 4.2.2 Агрегативная устойчивость лиофобных коллоидов. Строение коллоидной мицеллы Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения ...

Скачать
14177
0
0

... «мицелла» и «мицеллярный раствор». Эти термины были использованы им для обозначения систем, образованных нестехиометрическими соединениями в водной среде. Основная заслуга в становлении коллоидной химии как науки принадлежит Т. Грэму. Как уже отмечалось выше, именно этому ученому принадлежит идея введения термина «коллоид», производного от греческого слова «kolla», обозначающего «клей». Занимаясь ...

Скачать
38818
0
1

... явления при фильтрации пластовых жидкостей   На закономерности фильтрации жидкостей и газов в пористой среде влияют не только границы раздела между нефтью, газом и водой, но также и поверхностные явления, происходящие на границах твердое тело - жидкость. По результатам опытов, проведенных П. А. Ребиндером, М. М. Кусаковым, К. Е. Зинченко, при фильтрации через кварцевый песок углеводородных ...

Скачать
83726
2
5

... и многое другое, без чего немыслима сама жизнь. Все человеческое тело – это мир частиц, находящихся в постоянном движении строго по определенным правилам, подчиняющимся физиологии человека. Коллоидные системы организмов обладают рядом биологических свойств, характеризующих то или иное коллоидное состояние: 2.2 Коллоидная система клеток. С точки зрения коллоидно-химической физиологии ...

0 комментариев


Наверх