Зависимость токсичности органических поллютантов от рН и степени гумификации водоемов

Закономерности и факторы устойчивости пресноводных экосистем к антропогенному загрязнению
110646
знаков
5
таблиц
25
изображений

5.4 Зависимость токсичности органических поллютантов от рН и степени гумификации водоемов

 

Результаты экспериментов свидетельствуют о неоднозначном проявлении биологической активности различных органических поллютантов при закислении водной среды. Так, например, токсичность для личинок окуня компонентов буровых растворов (пропиленгликоль и продукт EC6029-А) по градиенту рН несколько снижается, оставаясь в переделах порогового уровня толерантности. Для дизельного топлива характерно существенное увеличение токсичности, а для бензина - снижение, достигающее биологически значимых по сравнению с нейтральной средой различий в диапазоне рН 5.0-4.0. Достоверное снижение токсичности гербицида Бетарен начинается с рН 5.5, а токсичность гербицида Голтикс увеличивается с превышением порогового уровня толерантности при рН 5.0-4.0.

Влияние ГВ на токсичность органических поллютантов при закислении также неоднозначно, что, вероятно, связано с различиями в химическом составе реагентов. Так, увеличение цветности опытной среды от 9 до 192 град (класс вод от ультраполигумозного до полигумозного) при снижении рН до 5 не оказывает достоверного воздействия на токсичность для D. pulex гербицидов Бетарен и Глуккор, бензина и формальдегида. Токсичность дизельного топлива усиливается в условиях закисления на фоне ультраолиго - мезо - и мезополигумозной среды, а на фоне полигумозной негативное влияние низких значений рН на его токсичность нейтрализуется. Для пропиленгликоля закисление воды сопровождается снижением токсичности при всех исследованных цветностях, однако увеличение содержания ГВ в воде является дополнительным фактором, снижающим токсичность реагента.

При постоянно действующих рН по мере увеличения содержания ГВ токсичность формальдегида повышается относительно малоцветного варианта во всем диапазоне активной реакции, а токсичность гербицида Бетарен усиливается только в кислой среде. Увеличение цветности до 100 град. и более значительно снижает токсичность Глуккора при всех значениях рН, а снижение токсичности дизельного топлива и пропиленгликоля в диапазоне цветности 100-350 град. наиболее значимо на фоне слабокислой и кислой среды. Весь материал свидетельствует о более существенном воздействии на биологическую активность большинства исследованных поллютантов класса гумозности вод, чем степени закисления.

 

5.5 Влияние на гидробионтов антропогенного поступления биогенов в условиях закисления водной среды

Учитывая приоритетность фосфора в лимитировании продуктивности биоценозов ксеногалобных водоемов, проведены эксперименты по изучению комплексного воздействия на зоопланктонные организмы Рмин. и рН. Корреляционный, регрессионный и графический анализ полученных результатов по градиенту закисления показал, что снижение активной реакции от нейтральной до кислой оказывает закономерное отрицательное влияние на модельные популяции D. pulex. В диапазоне рН 6.5-5.0 дополнительное поступление фосфора практически не уменьшает негативного эффекта и только при снижении рН до 4.5 внесение фосфора в концентрациях 0.05-0.80 мгР/л приводит к увеличению суммарной биомассы в 1.3-1.6 раза, т.е по сравнению с биогенной нагрузкой рН является более мощным экологическим фактором, воздействующим на функциональное состояние популяций зоопланктона.

В то же время, оценка экспериментальных и рассчитанных по уравнениям регрессии данных по градиенту биогенной нагрузки выявила стимулирующий эффект от дополнительного внесения фосфора во всем диапазоне исследованных рН. При этом, биологически значимый эффект биогенного воздействия усиливается по мере снижения постоянно действующего рН, достигая достоверных различий с контролем (без внесения фосфора) в диапазоне рН 5.5-4.5. Пороговые концентрации фосфора (ПК1.2), стимулирующие развитие популяций D. pulex по сравнению с контролем на 20 %, при низких значениях рН (5.5, 5.0 и 4.5), характерных для значительно закисленных б-мезоацидных вод, существенно меньше, чем при рН 6.0-7.0, соответствующих в-мезоацидному и олигоацидному классу вод (рис.9).

Рис. 9. Воздействие дополнительной фосфорной нагрузки на модельные популяции Daphnia pulex при различных значениях рН водной среды (по расчетным данным): стрелками указаны стимулирующие ПК1.2 фосфора

5.6 Оценка степени закисления поверхностных вод таежной зоны Европейского Севера России по зоопланктону

 

Исходя из предложенной С.П. Китаевым (1984) классификации ацидности озер различных природно-климатических зон, северотаежные водоемы разделены нами, с учетом региональной нормы реакции зоопланктонных организмов на закисление, на 4 группы: олигоацидные (рН  6.5), -мезоацидные (рН 6.4-5.5), -мезоацидные (рН 5.4-4.0) и полиацидные (рН < 4.0). Указанные пределы величины рН среды в озерах разных групп соответствуют характеру влияния этого показателя на качественный состав зоопланктонных комплексов и количество встреченных видов. На основании анализа опубликованных данных комплексных исследований, проводимых на водоемах таежной зоны Северо-Запада России, исходя из минимальных значений рН воды, при которых обнаружены те или иные зоопланктонные организмы, выделены наиболее показательные виды-индикаторы закисления и составлена шкала распределения индикаторных видов зоопланктона по степени закисления поверхностных вод, ориентированная на водные экосистем зоны северной тайги (табл. 4).

Отметки на шкале соответствуют значениям, предложенным Raddum, Fjellheim (1984) и используемым В.А. Яковлевым (1998) для распределения бентосных организмов. В разработанной нами шкале биоиндикаторы закисления объединены в группы в соответствии с их толерантностью к определенному уровню рН среды и обозначены категорией закисления вод. Оценка степени закисления озерных вод с использованием биологической шкалы распределения видов зоопланктона позволяет определить принадлежность озер к одной из четырех групп и дать картину реальной экологической ситуации в закисленных водоемах.

Проведенный по опубликованным данным и архивным материалам СевНИИРХ ПетрГУ анализ количественного развития видов зоопланктона - биоиндикаторов по параметру "рН-устойчивости" в пяти условно чистых озерах южной Карелии (Сангое, Вагатозеро, Лаймолаярви, Паяозеро, Пялизъярви), отличающихся величиной рН, озерно-речной системе Кенти-Кенто, испытывающей мощную антропогенную нагрузку от Костомукшского ГОКА и трех зонах Северного Выгозера, в разной степени подверженных воздействию Сегежского ЦБК, показал, что составленная нами биологическая шкала степени закисления вод позволяет достоверно оценить реакцию биоценоза природных озер на процесс ацидификации в условиях различной степени токсификации и эвтрофикации. Полученные результаты дают основание рекомендовать региональную шкалу ацидорезистентности зоопланктоценозов для прогнозирования и раннего предупреждения отрицательных последствий закисления поверхностных вод таежной зоны Европейского Севера России.

Таблица 4 Биологическая шкала распределения видов зоопланктона по степени закисления поверхностных вод таежной зоны Европейского Севера России

Вид, таксон Отметка на шкале

(группа ацидности)

Закисление
Rotatoria: Asplanchna priodonta, Plaesoma truncatum, Euchlanis dapidula , Filinia longiseta; Cladocera: Limnosida frondosa, Daphnia longispina, D. cristata, Bosmina coregoni, B. kessleri, Leptodora kindtii, Ceriodaphnia reticulate; Copepoda: Limnocalanus grimaldii macrurus, Eudiaptomus gracilis, Cyclops strenuus, Eucyclops macrurus 1 (олигоацидная)

Нет или слабое,

рН  6.5

Rotatoria: Bipalpus hudsoni, Euchlanis lyra, E. myersi, Synchaeta spp., Polyartra euryptera; Cladocera: Diaphanosoma brachiurum, Chydorus sphaericus, Eurycercus lamellatus, Ceriodaphnia affinis, Alona spp; Copepoda: Eudiaptomus graciloides, Cyclops scutifer, Cyclops vicinus 0.5 (-мезоацидная)

Среднее,

pH 6.4-5.5

Rotatoria: Keratella cochlearis, Kellicotia longispina, Conochilus spp.,Trichocerka spp., Lecane spp.; Cladocera: Holopedium gibberum, Scapholeberis spp., Sida cristalina, Bosmina obtusirostris v. lacustris, Ceriodaphnia quadrangula, Alonopsis elongata; Copepoda: Eudiaptomus denticornis, Eucyclops serrulatus, Mesocyclops leuckarti, M. oithonoides, Macrocyclops spp. 0.25 (-мезоацидная)

Значительное,

рН 5.4-4.0

Rotatoria: Keratella serrulata, Keratella cochlearis v. macracantha, Lecane lunaris; Cladocera: Ophryoxus gracilis, Pleuroxus laevis, Polyphemus pediculus; Copepoda: Paracyclops fimbriatus, Acantocyclops languidoides, A. nanus, A. bisetosus 0 (полиацидная)

Сильное,

рН < 4.0


6. Экологические основы нормирования антропогенной токсикологической нагрузки на пресноводные водоемы

Представленные в работе материалы свидетельствуют о том, что токсикорезистентность водных биоценозов существенно изменяется в географическом и временном аспекте, поэтому экологически обоснованное нормирование антропогенного загрязнения должно учитывать зональные и азональные особенности устойчивости водных экосистем к интоксикации. Однако результаты анализа данных аннотационных карт по токсикометрии 160 веществ показали, что общефедеральные рыбохозяйственные ПДК на 77 % являются функцией токсикорезистентности общепринятых индикаторных тест-объектов, не отражающих всего многообразия устойчивости к антропогенной интоксикации водных экосистем различных природно-климатических зон и биогеохимических провинций России.

Если использовать весь объем информации по разработанным ПДК и одновременно учитывать необходимость регионального регламентирования, в качестве первого шага повышения экологической значимости токсикологических нормативов целесообразно внести следующие коррективы в действующую систему общефедеральных рыбохозяйственных ПДК:

1. Все рыбохозяйственные ПДК разделить на 5 категорий в соответствии с гидрохимическим режимом и трофическим статусом водоема, на фоне которого проводится разработка регламента (табл. 5).

- в "О" категорию заносятся ПДК для веществ, токсичность которых согласно экспериментальной обоснованности не зависит от абиотических и биотических факторов среды (например, супермутагены);

- регламенты более высоких категорий могут распространятся (до специальной разработки) на более низкую категорию фоновой среды (например, 1 - на 2-4, 2 - на 3-4), но не наоборот;

- отнесение фонового водоема по любому параметру к более низкой категории означает категорийную принадлежность разработанного регламента;

- при снижении реагентом качества опытной среды в указанных пределах стандартных параметров (повышение минерализации, жесткости и т.д.) категория разработанного регламента соответственно понижается.

Таблица 5 Категории эколого-токсикологических регламентов (ОБУВ, ПДК)

Категория Параметры фонового водоема разработки регламента
регламента трофический статус (хлорофилл, мкг/л) минерализа-ция, мг/л

жесткость,

мг-экв/л

ХПК, мгО/л БПК20, мгО2/л сапробность, (индекс)
0 Полютанты, токсичность которых не зависит от зональных и азональных факторов токсикорезистентности водных экосистем
1

олиготрофный

(< 3)

до 125 до 1.50 до 7.5 до 1.0 ксеносапроб-ный (до 0.50)
2 мезотрофный (3-12) 126-250 1.51-3.00 7.6-15.0 1.1-2.0 олигосапроб-ный (0.51-1.50)
3 эвтрофный (12-48) 251-500 3.01-6.00 15.1-30.0 2.1-3.0 мезосапроб-ный (1.51-3.50)
4 гипертрофный (> 48) 501-1000 > 6.00 > 30.0 > 3.0 полисапроб-ный (> 3.50)

2. Разработку эколого-токсикологических регламентов необходимо проводить на чистой воде из регионального водоема с использованием регионально представительных олиготоксобных гидробионтов, т.е. с учетом зональных и азональных особенностей нормы реакции водных экосистем. Исследования на индикаторных организмах должны быть вспомогательными.

3. Методической базой экологической "привязки" наработанных общефедеральных ПДК могут стать региональные ряды токсобности представительных олиготоксобных гидробионтов и соотнесение их с устойчивостью стандартных общепринятых тест-объектов (дафния магна, сценедесмус, радужная форель).

Настоящие рекомендации относятся и к ксенобиотикам, и к соединениям, имеющим природные аналоги. Учитывая азональные особенности устойчивости водных экосистем к интоксикации природными соединениями, связанные с наследственно закрепленной нормой реакции представительных гидробионтов в соответствии с природным содержанием этих веществ в поверхностных водах, мы считаем целесообразным:

- в системе рыбохозяйственных ПДК выделить в специальную группу вещества природного происхождения, регламентирование которых следует вести с обязательным учетом нормы реакции представительных гидробионтов;

- в качестве ПДК для природных компонентов водной среды принимать сумму абсолютной допустимой добавки и фонового содержания вещества (элемента) в контрольной среде с указанием Хср. + 2у по фону за период исследований;

- в случае достоверных различий фонового содержания природного вещества в конкретной водной экосистеме и его концентрации в контрольной при разработке ПДК среде, утвержденный регламент необходимо корректировать с учетом нормы реакции представительных гидробионтов;

- ПДК для веществ природного происхождения также должны применяться с учетом зональных особенностей токсикорезистентности водных экосистем.

Сезонную динамику токсикорезистентности пресноводных экосистем необходимо учитывать при решении практических природоохранных вопросов, связанных, в частности, с определением режима сброса сточных вод (ПДС) в рыбохозяйственные водоемы. Проблемы сезонных ПДК не существует.


Заключение

Анализ литературных данных и результатов собственных многолетних исследований показал, что проблема устойчивости водных экосистем к антропогенной интоксикации имеет многоплановый характер.

Зональные особенности устойчивости обусловлены различиями в энергетике водных экосистем, влекущими за собой различия в гидрохимическом режиме, биопродуктивности и самоочищаемости, а также зональными особенностями нормы реакции представительных популяций гидробионтов. Приведенные в работе материалы свидетельствуют о том, что с увеличением суммарной солнечной радиации от тундры к степной зоне закономерно повышается трофический статус водотоков и озер, увеличивается биомасса, биопродуктивность и сапробность гидробионтов. С продвижением от зоны степи к таежной зоне и тундре наблюдается достоверное (p < 0.05) увеличение в биоценозе доли чувствительных к интоксикации олиготоксобных видов и снижение относительной биомассы устойчивых б-мезотоксобов. О необходимости применения закона природной географической зональности при определении устойчивости водных экосистем к антропогенной интоксикации свидетельствуют и результаты наших эколого-токсикологических исследований, проведенных в Карелии, Хакасии, Приморском крае, Башкирии, Южном Урале и Восточном Казахстане, показавшие достоверную зависимость от качества фоновой среды изученных токсикометрических параметров поллютантов (ПК, КТН50, Кп).

Азональные особенности токсикорезистентности, связанные, в частности, с наличием биогеохимических провинций, также являются важным комплексом факторов, обусловливающих устойчивость пресноводных экосистем к загрязнению. Проведенные в широком биогеографическом аспекте исследования показали зависимость региональной резистености представительных гидробионтов к токсикантам, имеющим природные аналоги, от их фонового содержания в среде обитания, т.е. устойчивость водных экосистем к интоксикации природными химическими соединениями базируется на наследственной норме реакции, закрепленной отбором в соответствии с природным фоном этих веществ в поверхностных водах. В целом, токсикорезистентность биоценоза отражает региональную норму реакции, эволюционно связанную с природно-климатическими и биогеохимическими условиями ее формирования. Установленные особенности устойчивости северотаежных водоемов к процессам антропогенной ацидификации, токсификации и эвтрофикации подтвердили необходимость регионального подхода при нормировании и контроле загрязнения поверхностных вод России.

Выявленные межзональные закономерности и региональные особенности сезонной динамики устойчивости гидробионтов к интоксикации на организменном, популяционном и ценотическом уровне показали, что для экологически корректной оценки уязвимости водных экосистем в условиях интенсивного антропогенного загрязнения важно установить чувствительные и устойчивые периоды в сезонных флуктуациях биологических компонентов их биоценозов.

Анализ экологической значимости действующей системы нормирования загрязнения водных экосистем также показал, что разработка общефедеральных рыбохозяйственных ПДК на узкой базе нормы реакции доступных в регионе гидробионтов, а тем более на лабораторных культурах, недопустима. Биологически необоснованное применение для регламентирования антропогенной токсикологической нагрузки на водные экосистемы различных природно-климатических зон и биогеохимических провинций России общефедеральных рыбохозяйственных ПДК неизбежно влечет за собой опасность непредсказуемой экологической ошибки.


Выводы

1. Характер антропогенной трансформации водных экосистем имеет четкие зональные черты. Каждый процесс их изменения, даже если он вызван одними и теми же причинами, протекает различно в зависимости от конкретных природных условий. Россия обладает огромным фондом пресноводных водоемов, расположенных в разных природно-климатических зонах - от тундры до степи и полупустыни, что обусловливает значительную разнокачественность водных экосистем, в том числе и по их устойчивости к антропогенной токсикологической нагрузке.

2. Токсичность веществ самой разной химической природы (соединения металлов, пестициды, нефтепродукты) существенно зависит от гидрохимического режима (класс вод, минерализация, жесткость, рН, цветность, ПО и т.д.) и трофического статуса водоема, а также нормы реакции представительных гидробионтов, формирование которой тесно связано со средой обитания.

3. Сравнительный анализ пресноводных экосистем различных природно-климатических зон показал достоверное уменьшение их абиотической и биотической забуференности с юга на север, а, следовательно, снижение устойчивости к антропогенной интоксикации высокоширотных биоценозов зоны тундры и тайги по сравнению с ценозами более низких широт.

4. В регионе Карелии (в пределах одной зоны северной тайги) также наблюдается зависимость токсикорезистентности пресноводных биоценозов от географической широты, однако на первое место выступают экологические факторы, отражающие региональную специфику: продолжительность светового дня, прозрачность воды, температурный режим водоемов, величина перманганатной окисляемости и т.д.. Регионально значимым параметром, имеющим тесную достоверную связь с приоритетными биотическими факторами функционирования пресноводных экосистем Карелии и на 75 % обусловливающим токсобность руководящего ихтиологического комплекса озер (R2 = 0.75, p << 0.01) является прозрачность воды, что позволяет использовать ее в качестве косвенного показателя, характеризующего устойчивость пресноводных биоценозов региона к антропогенному загрязнению.

5. Одним из ведущих факторов токсикорезистентности водных экосистем всех природно-климатических зон и биогеохимических провинций является сезонная динамика функционального состояния биоценозов, адаптивно связанная с зональными и ландшафтными особенностями годовой цикличности энергетической обеспеченности биологических процессов.

6. Выявлена ярко выраженная сезонная динамика токсикорезистентности гидробионтов на организменном, популяционном и ценотическом уровне, обусловленная наследственно закрепленной нормой реакции на окологодовые изменения абиотических компонентов среды. Сезонные изменения устойчивости к интоксикации характерны не только для природных, но и культуральных (лабораторных) популяций планктонных организмов, а сезонная динамика экологических параметров зоопланктонных сообществ, в том числе, их токсикорезистентности, наблюдается как на условно чистых, так и на загрязняемых участках водных экосистем и в значительной степени определяется качественными и количественными показателями антропогенной токсикологической нагрузки. Показано также, что изменения токсикорезистентности зоопланктоценоза в сезонном аспекте более значительны, чем параметров сапробности и видового разнообразия.

7. Сезонный фактор должен учитываться при разработке научных основ регламентирования антропогенной токсикологической нагрузки, прогнозировании последствий антропогенного загрязнения и в решении практических природоохранных вопросов, связанных с разработкой режима сброса сточных вод в рыбохозяйственные водоемы. В хорошо исследованных экосистемах сезонные изменения соотношения численности устойчивых и чувствительных к токсическому воздействию видов могут служить показателем их устойчивости к антропогенному загрязнению в разные периоды годового цикла. Развитие данного направления исследований особенно актуально в зонах тундры и северной тайги в связи с пониженной устойчивостью водных экосистем Севера к антропогенному воздействию, а также резко выраженной (контрастной) сезонной изменчивостью их функционального состояния и, как следствие, их токсикорезистентности.

8. Все организмы, в том числе водные, в ходе эволюционного развития преадаптированы к определенной вариабельности природных абиотических факторов среды. При формировании модельных популяций фито – и зоопланктонных гидробионтов (Scenedesmus quadricauda (Turp.) Breb., Daphnia pulex Leydig) в условиях длительного хронического влияния компонентов, имеющих природные аналоги (рН, металлы), в диапазоне адаптационных возможностей наблюдается расширение их нормы реакции на воздействующий фактор и повышение популяционной ацидо- и токсикорезистентности.

9. Увеличение устойчивости адаптированных модельных популяций S. quadricauda и D. pulex к закислению водной среды и токсическому воздействию исследованных металлов (Cu и Pb) может быть как следствием направленного отбора организмов с геномом, обусловливающим более высокую популяционную токсикорезистентность, так и результатом физиологических адаптаций, связанных с защитными метаболическими реакциями на молекулярном уровне, например, с увеличением в теле дафний металлотионеина, участвующего в метаболизме и детоксикации меди и свинца. Вероятнее всего, наблюдаемые нами в модельных популяциях планктонных организмов адаптивные перестройки определяются сочетанием механизмов фено- и генотипической адаптации.

10. Азональные особенности токсикорезистентности, связанные с неравномерным характером рассеяния элементов в земной коре и наличием биогеохимических провинций, представляют важный комплекс факторов, обусловливающих устойчивость пресноводных экосистем к антропогенному загрязнению поллютантами, являющимися одновременно природными компонентами водной среды. Вовлечение в биогенную миграцию химических элементов в определенных количествах и соотношениях создает черты своей региональной нормы, состава фауны и флоры, а также реакции организмов на изменения в среде обитания.

11. Устойчивость водных экосистем к антропогенной нагрузке природными химическими соединениями (элементами), в частности металлами, базируется на наследственной норме реакции, закрепленной отбором в соответствии с их природным содержанием в поверхностных водах, поэтому экстраполяция выводов по токсикорезистентности гидробионтов, представительных для биогеохимических провинций с их повышенным содержанием, на другие регионы несет экологическую опасность.

12. Отличительной особенностью большинства водных экосистем зоны тайги, наряду со слабой минерализацией, является повышенная природная кислотность вод и высокое содержание гуминовых веществ. Активная реакция среды является важнейшим экологическим фактором, оказывающим специфическое воздействие как на степень токсичности поллютантов различной химической природы (металлы, нефтепродукты, пестициды и т.д.), так и на уровень ацидо- и токсикорезистентности представительных для водоемов Карелии гидробионтов. Увеличение содержания в воде гуминовых веществ обусловливает значительное снижение токсичности металлов в условиях закисления и оказывает более существенное воздействие на биологическую активность большинства исследованных органических реагентов, чем величина рН. При результирующем действии процессов ацидификации и эвтрофикации дополнительное внесение фосфора в диапазоне концентраций 0.05-0.8 мг/л практически не снижает негативных последствий закисления. Напротив, в условиях постоянных рН выявлен статистически значимый стимулирующий эффект исследованной биогенной нагрузки для развития планктонных организмов в водной среде с кислой реакцией (рН 4.5-5.5) и его слабое проявление при рН, соответствующих слабокислым и близким к нейтральным средам.

13. Установленные на примере Карелии особенности токсификации и эвтрофикации в условиях закисления и разной степени гумификации поверхностных вод должны учитываться при регламентировании антропогенного загрязнения водоемов зоны тайги. Полученные на представительных гидробионтах достоверные уравнения регрессии (р  0.05) зависимости токсичности приоритетных для региона Карелии металлов и органических поллютантов от рН и цветности водной среды могут быть использованы при определении их критической токсикологической нагрузки для водных экосистем таежной зоны Севера России в диапазоне активной реакции от нейтральной до кислой и класса гумидности вод от ультраолигогумозного до ультраполигумозного. Применение разработанной региональной шкалы ацидорезистентности зоопланктоценозов позволит повысит экологическую эффективность мониторинговых исследований состояния водных биоценозов зоны северной тайги.

14. Выявленные качественные и количественные отличия устойчивости водных экосистем различных природно-климатических зон и биогеохимических провинций к антропогенной интоксикации, а также анализ экологической значимости общефедеральных рыбохозяйственных ПДК однозначно свидетельствуют о биологической нецелесообразности и экологической опасности системы единых токсикологических регламентов без учета зональной и региональной нормы реакции гидробионтов, а также биотической и абиотической забуференности пресноводных водоемов. Сформулированные принципы нормирования и контроля антропогенной токсикологической нагрузки на водные экосистемы, учитывающие гидрохимический режим, трофический статус водоемов и региональную токсобность водных биоценозов, направлены на совершенствование методологической и методической базы разработки рыбохозяйственных регламентов для поллютантов различной химической природы.


Список опубликованных работ по теме диссертации

I. Статьи в рецензируемых научных журналах, рекомендованных ВАК РФ

1.       Волков И.В., Заличева И.Н., Каймина Н.В., Ганина В.С., Мовчан Г.В. Региональные особенности токсикорезистентности гидробионтов // Гидробиол. журн.- 1992.- Т. 28.- № 3.- С. 69-72.

2.       Волков И.В., Заличева И.Н. Эколого-токсикологические принципы регионального лимитирования содержания металлов в поверхностных водах // Гидробиол. журнал.- 1993.- Т. 29.- № 1.- С. 52-58.

3.       Заличева И.Н., Волков И.В., Шустова Н.К, Ганина В.С. и др. Контроль и регламентирование техногенного загрязнения водоемов по индикаторным показателям биоты // Гидробиол. журнал .- 2004.- Т. 40.- № 2.- С. 48-63.

4.       Волков И.В., Заличева И.Н., Ганина В.С., Ильмаст Т.Б., Каймина Н.В. и др. О принципах регламентирования антропогенной нагрузки на водные экосистемы // Водные ресурсы.- 1993.- Т. 20.- № 6.- С. 707-713.

5.       Заличева И.Н., Волков И.В. К вопросу о регламентировании антропогенной нагрузки биогенными веществами на водные экосистемы в таежной природно-климатической зоне // Водные ресурсы.- 1994.- Т. 21.- № 6.- С. 674-679.

6.       Заличева И.Н., Волков И.В. Роль биогенных веществ в биологической активности многокомпонентных сбросов // Водные ресурсы.- 1995.- Т. 22.- № 1.- С. 126-127.

7.       Волков И.В., Заличева И.Н., Моисеева В.П., Самылин А.Ф., Харин В.Н. Региональные аспекты водной токсикологии // Водные ресурсы.- 1997.- Т. 24.- № 5.- С. 556-562.

8.       Волков И.В., Заличева И.Н., Шустова Н.К., Ильмаст Т.Б. Есть ли экологический смысл у системы общефедеральных рыбохозяйственных ПДК? // Экология.- 1996.- № 5.- С. 350-355.

9.       Волков И.В., Шустова Н.К., Заличева И.Н. Конкурентоспособность как интегральный показатель функционального состояния модельных популяций Cladocera при интоксикации // Экология.- 1999.- № 5.- С. 364-368.

10.    Заличева И.Н., Ганина В.С., Шустова Н.К. Эколого-токсикологические аспекты устойчивости гидробионтов таежной природно-климатической зоны к закислению водной среды // Экология.- 2006.- № 1.- С. 64-69.

11.    Shustova N., Zalicheva I., Kitaev S., Ganina V. Assessment of surface waters acidification as indicated by zooplankton in the taiga zone of Northern European Russia // Russian Journal of Ecology, Vol. 40, No. 7. (1 December 2009), pp. 495-500.

II. Публикации в научных журналах, сборниках и материалах конференций

1        Высоцкая Р.У., Заличева И.Н., Волков И.В. Чувствительность лизосом рыб к воздействию экстремальных факторов среды в раннем онтогенезе // Структура и функции лизосом: Тез. докл. 3-го Всесоюз. сипоз. с международным участием.- М.: АН СССР, 1986. С. 37-38.

2        Заличева И.Н., Мовчан Г.В., Каймина Н.В., Ганина В.С., Валетова С.А. Региональные особенности лимитирования техногенного поступления металлов в рыбохозяйственных водоемах // Пути решения региональных проблем охраны окружающей среды и рационального использования природных ресурсов в КАССР: Тез. докл. научн.-техн. конф.- Петрозаводск, 1987. С. 63-65.

3        Волков И.В., Заличева И.Н., Каймина Н.В. К проблеме региональных рыбохозяйственных ПДК // Проблемы водной токсикологии: межвузовский сборник.- Петрозаводск, 1988.- С. 92-98.

4        Волков И.В., Ганина В.С., Заличева И.Н., Каймина Н.В., Мовчан Г.В. Сравнительная токсикорезистентность гидробионтов и система токсобности // Первая Всесоюз. конф. по рыбохоз. токсикологии: Тез. докл.- Рига, 1989. Ч. 1. С. 77-78.

5        Волков И.В., Заличева И.Н., Каймина Н.В., Мовчан Г.В., Ганина В.С. Региональные особенности токсикорезистентности гидробионтов к металлам // Первая Всесоюз. конф. по рыбохоз. токсикологии: Тез. докл.- Рига, 1989. Ч. 1 . С. 75-76.

6        Волков И.В., Заличева И.Н., Каймина Н.В., Ганина В.С., Мовчан Г.В. Региональные особенности токсикорезистентности гидробионтов и система токсобности // Экспериментальная водная токсикология.- Рига: Зинатне, 1990. Вып.14. - С. 225-231.

7        Высоцкая Р.У., Ломаева Т.А., Заличева И.Н., Волков И.В. Влияние свинца и цинка на некоторые биохимические показатели радужной форели в процессе эмбриогенеза // Биохимия экто- и эндотермных организмов в норме и при патологии,- Петрозаводск: КНЦ АН СССР, 1990.- С. 83-91.

8        Волков И.В., Ганина В.С., Заличева И.Н., Каймина Н.В., Мовчан Г.В., Харин В.Н. Токсикологическая оценка системы контроля за сбросами предприятий // Биологические ресурсы водоемов бассейна Балтийского моря: Тез. докл. ХХIII конф. по изучению водоемов Прибалтики. - Петрозаводск, 1991. С. 175-176.

9        Волков И.В., Заличева И.Н., Ганина В.С., Каймина Н.В., Мовчан Г.В. и др. Региональные аспекты регламентирования техногенного поступления металлов в рыбохозяйственные водоемы // Биологические ресурсы водоемов бассейна Балтийского моря: Тез. докл. ХХIII конф. по изучению водоемов Прибалтики. - Петрозаводск, 1991. С. 176-177.

10     Волков И.В., Заличева И.Н., Каймина Н.В., Ганина В.С., Мовчан Г.В. и др. Влияние гидрохимического режима и трофического статуса водоема на токсичность металлов для гидробионтов // Биологические ресурсы водоемов бассейна Балтийского моря: Тез. докл. ХХIII конф. по изучению водоемов Прибалтики. - Петрозаводск, 1991. С. 178-179.

11     Волков И.В., Заличева И.Н., Морозов А.К. Биогеографический принцип регламентирования антропогенной нагрузки на водные экосистемы // Тез. докл. VI съезда ВГБО, октябрь 1991 г. - Мурманск, 1991.- Ч.2.- С. 107-108.

12     Высоцкая Р.У., Заличева И.Н., Волков И.В. Влияние тяжелых металлов на некоторые физиолого-биохимические показатели радужной форели в раннем онтогенезе // Биологические ресурсы водоемов бассейна Балтийского моря: Тез. докл. ХХIII конф. по изучению водоемов Прибалтики. - Петрозаводск, 1991. С. 144.

13     Феоктистов В.М., Морозов А.К., Заличева И.Н. Влияние гуминовых веществ на токсичность меди и цинка для Daphnia magna // Биол. науки.- 1991.- № 10.- C. 130-135.

14     Волков И.В., Заличева И.Н. Охрана природы: Регламентирование антропогенной нагрузки на водные экосистемы с учётом зональных и азональных факторов их токсикорезистентности // Зарубежная радиоэлектроника.- 1993.- № 5.- С. 44-46.

15     Заличева И.Н., Волков И.В., Харин В.Н. К вопросу об универсальном индикаторном тест-объекте в водной токсикологии // Зарубежная радиоэлектроника.- 1994.- № 7/8.- С. 63-64.

16     Волков И.В., Шустова Н.К., Заличева И.Н. Экологическая оценка универсальных индикаторов и критериев качества среды // Биологические ресурсы Белого моря и внутренних водоемов Европейского Севера: Тез. докл. международной конф., 19-23 ноября 1995.- Петрозаводск, 1995. С. 125-126.

17     Заличева И.Н., Волков И.В., Самылин А.Ф., Моисеева В.П., Ильмаст Т.Б. К вопросу об универсальном индикаторном тест-объекте в водной токсикологии: сообщение 2. Сравнительная оценка токсикорезистентности индикаторных и представительных гидробионтов региона Карелии // Зарубежная радиоэлектроника.- 1995.- № 4.- С. 19-22.

18     Волков И.В., Заличева И.Н., Шустова Н.К., Ильмаст Т.Б. Некоторые экологические аспекты рыбохозяйственных ПДК // Проблемы экологической токсикологии.- Петрозаводск: ПетрГУ, 1998.- С. 8-18.

19     Волков И.В., Заличева И.Н., Шустова Н.К. Зависимость токсикорезистентности гидробионтов к металлам от гидрохимического и трофического статуса водоема // Тез. докл. I-го съезда токсикологов России.- М., 1999. С. 272.

20     Волков И.В., Заличева И.Н., Шустова Н.К. Экологические аспекты токсикорезистентности пресноводных биоценозов // Нефтегазовые технологии. - 2000. - № 3.- С. 5-8.

21     Заличева И.Н., Волков И.В., Ганина В.С., Шустова Н.К. Зависимость экологической безопасности буровых растворов от солености акватории нефтедобычи // Нефтегазовые технологии.- 2001.- № 3.- С. 35-38.

22     Заличева И.Н., Волков И.В., Ганина В.С., Шустова Н.К. К вопросу об определении рыбохозяйственных предельно допустимых концентраций компонентов буровых растворов // Нефтегазовые технологии.- 2001.- № 4. - С. 26-32.

23     Высоцкая Р.У., Крупнова М.Ю., Заличева И.Н., Ломаева Т.А. Оценка токсикорезистентности развивающейся икры семги к компонентам буровых растворов // Проблемы воспроизводства, кормления и борьбы с болезнями рыб при выращивании в искусственных условиях / Материалы научн. конф. (14-18 октября 2002 г., Петрозаводск).- Петрозаводск, 2002.- С. 50-54.

24     Заличева И.Н., Волков И.В., Ганина В.С., Шустова Н.К. Зональные и региональные особенности устойчивости пресноводных биоценозов Карелии к антропогенной интоксикации // Современные проблемы водной токсикологии: Тез. докл. Всероссийской конф. с участием специалистов из стран ближнего и дальнего зарубежья (19-21 ноября 2002 г., Борок). Борок, 2002.- С.160-161.

25     Заличева И.Н., Волков И.В., Ганина В.С., Шустова Н.К. Некоторые экологические аспекты регламентирования антропогенной токсикологической нагрузки на морские биоценозы // Новые технологии в защите биоразнообразия в водных экосистемах: Тез. докл. Международн. конф. (27-29 мая 2002 г., Москва, МГУ).- Москва, 2002.- С. 115.

26     Заличева И.Н., Шустова Н.К., Ганина В.С. Ацидорезистентность зоопланктоценозов водных экосистем таежной природно-климатической зоны // Современные проблемы водной токсикологии: Тез. докл. Всероссийской конф. с участием специалистов из стран ближнего и дальнего зарубежья (19-21 ноября 2002 г., Борок).- Борок, 2002.- С.161-162.

27     Заличева И.Н., Шустова Н.К, Ганина В.С. Реакция зоопланктоценозов незагрязненных природных водоемов Карелии на ацидификацию // Биотехнология – охране окружающей среды: Тез. докл. второй Международн. научн. конф. (25-27 мая 2004 г., Москва, МГУ). Москва, 2004.- С. 32.

28     Заличева И.Н., Ганина В.С., Шустова Н.К. К вопросу о возрастной токсикорезистентности рыб // Биотехнология – охране окружающей среды: Тез. докл. IV Международн. научн. конф. (21-23 ноября 2006 г., Москва, МГУ). Москва, 2006 г.- С. 218.

29     Заличева И.Н., Ганина В.С., Шустова Н.К. Влияние гуминовых веществ на токсичность органических поллютантов в условиях ацидификации водных экосистем таежной зоны // Вопросы популяционной экологии / Тр. ПетрГУ.- Петрозаводск. 2008. Вып. 2. С. 271-291.

30     Заличева И.Н., Ганина В.С., Шустова Н.К. Возрастная токсикорезистентность зоопланктонных организмов в сезонном аспекте // Вопросы популяционной экологии / Тр. ПетрГУ.- Петрозаводск. 2008. Вып. 2. С. 291-303.


Информация о работе «Закономерности и факторы устойчивости пресноводных экосистем к антропогенному загрязнению»
Раздел: Экология
Количество знаков с пробелами: 110646
Количество таблиц: 5
Количество изображений: 25

Похожие работы

Скачать
66785
0
0

... остатки плодов и овощей, отходы кожевенной и целлюлозно-бумажной промышленности, сахарных и пивоваренных заводов, предприятий мясомолочной, консервной и кондитерской промышленности, являются причиной органических загрязнений водоемов. В сточных водах обычно около 60% веществ органического происхождения, к этой же категории органических относятся биологические (бактерии, вирусы, грибы, водоросли) ...

Скачать
63946
0
0

... ­поненты природной среды, и в первую очередь такие, как воздух, вода, земля, растительный и животный мир, недра. 1. Задачи статистического изучения загрязнения окружающей среды   Основными задачами статистики окружающей среды являются: ·     обеспечение правительственных и государственных органов управле­ния, министерств, ведомств, научно-исследовательских учреждений, а также общественности ...

Скачать
122146
0
0

... заполнения экологических ниш. 11. Принцип естественности или старый автомобиль. 12. Экологическая, социальная и экономическая эффективность технических систем со временем неуклонно снижается. Рациональное природопользование и охрана природы должны основываться на следующих принципах: (Н.Ф.Реймерсу) Закон ограниченности (исчерпаемости) природных ресурсов: все ПР конечны. Закон соответствия ...

Скачать
47885
0
0

... . Наконец, при концентрациях ТМ в почвах, превышающих фоновые на четыре и более порядков, обнаруживается катастрофическое снижение микробиологической активности почв, граничащее с полной гибелью микроорганизмов. 6. ТЯЖЕЛЫЕ МЕТАЛЛЫ В РАСТЕНИЯХ Растительная пища является основным источником поступления ТМ в организм человека и животных. По разным данным, с ней поступает от 40 до 80 % ТМ, и ...

0 комментариев


Наверх