Применение методов линейного программирования для оптимизации стоимости перевозок

15840
знаков
10
таблиц
3
изображения

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Реферат

по дисциплине: Методы и модели в экономике и менеджменте.

на тему: «Применение методов линейного программирования для оптимизации стоимости перевозок»

Воронеж 2010

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.

В общей постановке транспортная задача состоит в отыскании оптимального плана перевозок некоторого однородного груза с  баз   потребителям .

Различают два типа транспортных задач: но критерию стоимости (план перевозок оптимален, если достигнут минимум затрат на его реализацию) и по критерию времени (план оптимален, если на его реализацию затрачивается минимум времени).

(3. )

 
Обозначим количество груза, имеющегося на каждой из  баз (запасы), соответственно ,а общее количество имеющегося в наличии груза–:

;

(3. )

 
заказы каждого из потребителей (потребности) обозначим соответственно, а общее количество потребностей – :

,

(3. )

 
Тогда при условии


(3. )

 
мы имеем закрытую модель, а при условии

– открытую модель транспортной задачи.

Очевидно, в случае закрытой модели весь имеющийся в наличии груз развозится полностью, и все потребности заказчиков полностью удовлетворены; в случае же открытой модели либо все заказчики удовлетворены и при этом на некоторых базах остаются излишки груза , либо весь груз оказывается израсходованным, хотя потребности полностью не удовлетворены .

Так же существуют одноэтапные модели задач, где перевозка осуществляется напрямую от, например, базы или завода изготовителя к потребителю, и двухэтапные, где между ними имеется “перевалочный пункт”, например – склад.

План перевозок с указанием запасов и потребностей удобно записывать в виде следующей таблицы, называемой таблицей перевозок (Таблица 3. ):

Таблица 3. - План перевозок с указанием запасов и потребностей

Пункты

Отправления

Пункты назначения Запасы

Потребности

или


Условие  или  означает, с какой задачей мы имеем дело, с закрытой моделью или открытой моделью транспортной задачи. Переменное  означает количество груза, перевозимого с базы  потребителю : совокупность этих величин образует матрицу (матрицу перевозок).

Очевидно, переменные  должны удовлетворять условиям:

(3. )

 

Система (3. ) содержит  уравнений с  неизвестными. Её особенность состоит в том, что коэффициенты при неизвестных всюду равны единице. Кроме того, все уравнения системы (3. ) могут быть разделены на две группы: первая группа из т первых уравнений (“горизонтальные” уравнения) и вторая группа из п остальных уравнений (“вертикальные” уравнения). В каждом из горизонтальных уравнений содержатся неизвестные с одним и тем же первым индексом (они образуют одну строку матрицы перевозок), в каждом из вертикальных уравнений содержатся неизвестные с одним и тем же вторым индексом (они образуют один столбец матрицы перевозок). Таким образом, каждая неизвестная встречается в системе (3. ) дважды: в одном и только одном горизонтальном и в одном и только одном вертикальном уравнениях.

Такая структура системы (3. ) позволяет легко установить ее ранг. Действительно, покажем, что совокупность неизвестных, образующих первую строку и первый столбец матрицы перевозок, можно принять в качестве базиса. При таком выборе базиса, по крайней мере, один из двух их индексов равен единице, а, следовательно, свободные неизвестные определяются условием , .Перепишем систему (3. ) в виде

(3. )

 

где символы и означают суммирование по соответствующему индексу. Так, например,

При этом легко заметить, что под символами такого суммирования объединяются только свободные неизвестные (здесь , ).

В рассматриваемой нами системе только два уравнения, а именно первое горизонтальное и первое вертикальное, содержат более одного неизвестного из числа выбранных нами для построения базиса. Исключив из первого горизонтального уравнения базисные неизвестные  с помощью вертикальных уравнений, мы получаем уравнение

или короче

(3. )

 

где символ  означает сумму всех свободных неизвестных. Аналогично, исключив из первого вертикального уравнения базисные неизвестные  с помощью горизонтальных уравнений, мы получаем уравнение

(3. )

 

Так как для закрытой модели транспортной задачи , то полученные нами уравнения (3. ) и (3. ) одинаковы и, исключив из одного из них неизвестное , мы получим уравнение-тождество 0=0, которое из системы вычеркивается.

Итак, преобразование системы (3. ) свелось к замене двух уравнений (первого горизонтального и первого вертикального) уравнением (3. ). Остальные уравнения остаются неизменными. Система приняла вид


(3. )

 

В системе (3. ) выделен указанный выше базис: базисные неизвестные из первых т уравнений образуют первый столбец матрицы перевозок, а базисные неизвестные остальных уравнений образуют первую строку матрицы перевозок без первого неизвестного  [она входит в первое уравнение системы (3. )]. В системе (3. ) имеется  уравнений, выделенный базис содержит  неизвестных, а, следовательно, и ранг системы (3. ) .

Для решения транспортной задачи необходимо кроме запасов и потребностей знать также и тарифы , т. е. стоимость перевозки единицы груза с базы  потребителю .

Совокупность тарифов  также образует матрицу, которую можно объединить с матрицей перевозок и данными о запасах и потребностях в одну таблицу 3.:

Таблица 3. - Совокупность тарифов данные о запасах и потребностях

Пункты

Отправления

Пункты назначения Запасы

Потребности

или

Сумма всех затрат, т. е. стоимость реализации данного плана перевозок, является линейной функцией переменных :

(3. )

 

Требуется в области допустимых решений системы уравнений (3. ) и (3.) найти решение, минимизирующее линейную функцию (3. ).

Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен  то среди всех  неизвестных  выделяется  базисных неизвестных, а остальные · неизвестных являются свободными. В базисном решении свободные неизвестные равны нулю. Обычно эти нули в таблицу не вписывают, оставляя соответствующие клетки пустыми. Таким образом, в таблице перевозок, представляющей опорный план, мы имеем  заполненных и · пустых клеток.

На предприятии ОАО «Электросигнал» имеется 4 транзитных склада Аi, на которых хранятся сборочные узлы и 5 цехов Bj, занимающихся сборкой готовой продукции. Ниже, в таблице 3., приведены данные по количеству сборочных узлов на каждом складе, запросы цехов и стоимость перевозки одного агрегата из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы цехов будут удовлетворены при минимальной суммарной стоимости перевозок.


Таблица 3. – Исходные данные по количеству сборочных узлов и стоимость перевозки

Цеха

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

А1 1=50)

1,0 2,0 3,0 2,5 3,5

А22=20)

0,4 3,0 1,0 2,0 3,0

А33=75)

0,7 1,0 1,0 0,8 1,5

А44=80)

1,2 2,0 2,0 1,5 2,5

В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного цеха B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу 3. :

Таблица 3. -

Цеха

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 1=50)

1,0 2,0 3,0 2,5 3,5 0

А22=20)

0,4 3,0 1,0 2,0 3,0 0

А33=75)

0,7 1,0 1,0 0,8 1,5 0

А44=80)

1,2 2,0 2,0 1,5 2,5 0

Математическая модель: обозначим xij – количество товара, перевозимого из Аi в Bj. Тогда

x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

X = x31 x32 x33 x34 x35 x36 - матрица перевозок.

x41 x42 x43 x44 x45 x46

min(x11+2x12+3x13+2,5x14+3,5x15+0,4x21+3x22+x23+2x24+3x25+0,7x31+x32+x33+0,8x34+1,5x35++1,2x41+2x42+2x43+1,5x44+2,5x45) (3. )


x11+x12+x13+x14+x15+x16=50

x21+x22+x23+x24+x25+x26=20

x31+x32+x33+x34+x35+x36=75

x41+x42+x43+x44+x45+x46=80

(3. )

 
 x11+x21+x31+x41=40  

 x12+x22+x32+x42=50

 x13+x23+x33+x43=15

 x14+x24+x34+x44=75

 x15+x25+x35+x45=40

 x16+x26+x36+x46=5

 xij≥0 (i=1,2,3,4 ; j=1,2,3,4,5,6 ) (3. )

Двойственная ЗЛП:

max(50u1+20u2+75u3+80u4+40v1+50v2+15v3+75v4+40v5+5v6) (3. )

u2+v1≤0,4

u2+v2≤3

u2+v3≤1

u2+v4≤2

u2+v5≤3

u2+v6≤0

 

u3+v1≤0,7

u3+v2≤1

u3+v3≤1

u3+v4≤0,8

u3+v5≤1,5

u3+v6≤0

 

u4+v1≤1,2

u4+v2≤2

u4+v3≤2

u4+v4≤1,5

u4+v5≤2,5

u4+v6≤0

 

u1+v1≤1

u1+v2≤2

u1+v3≤3  (3. )

u1+v4≤2,5

u1+v5≤3,5

u1+v6≤0

ui,vj – произвольные (i=1,2,3,4 ; j=1,2,3,4,5,6 )

Будем искать первоначальный план по методу наименьшей стоимости:

1) x21=20и 2-ую строку исключаем;

2) x31=20и 1-ый столбец исключаем;

3) x34=55и 3-ю строку исключаем;

4) x44=20и 4-ый столбец исключаем;

5) x12=50 и 1-ю строку и 2-ой столбец исключаем и x32=0;

6) x43=150 и 3-ий столбец исключаем;

7) x45=40 и 5-ый столбец исключаем и x46=5.

Составим таблицу 3. . Здесь и далее в нижнем правом углу записываем значение перевозки.

Таблица 3. – Проведение итераций

 Цеха

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 1=50)

1,0

 50

 
2,0
3,0 2,5 3,5 0

А22=20)

0,4

 20

 
3,0 1,0 2,0 3,0 0

А33=75)

0,7

 20

 

 0

 
1,0
1,0

 55

 
0,8
1,5 0

 5

 

 15

 
А44=80)
1,2 2,0 2,0

 20

 
1,5

 40

 
2,5
0

Стоимость 1-ого плана:

D1=2•50+0,4•20+0,7•20+0,8•55+2•15+1,5•20+2,5•40=326.

Будем улучшать этот план методом потенциалов: ui- потенциал Аi ,vj- потенциал Bj. Тогда u1+v2=2,u2+v1=0,4, u3+v1=0,7, u3+v2=1, u3+v4=0,8, u4+v3=2, u4+v4=1,5, u4+v5=2,5 ,u4+v6=0.Положим u1=0,тогда v2=2,u3=-1,v1=1,7,v4=1,8, u2=-1,3,u4=-0,3, v3=2,3,v5=2,8,v6=0,3.Составим таблицу 3. :

Таблица 3. - Проведение итераций

 Цеха

Склад

B1

(b1=40)

v1=1,7

B2

(b2=50)

v2=2

B3

(b3=15)

v3=2,3

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

Овал: +

 0,7

 
А1 1=50)

U1=0

 0

 
1,0

Овал: -

 - 0,7

 

 50

 
2,0

 - 0,7

 
3,0

 - 0,7

 
2,5

 0,3

 
3,5
0

 0

 
А22=20)

U2=-1,3

 - 2,3

 

 20

 
0,4

 0

 
3,0

 - 1,5

 
1,0

 - 1,5

 
2,0

 - 1

 
3,0
0

 0

 
А33=75)

U3=-1

Овал: -

 0

 
0,7

 20

 

Овал: +

 0,3

 

 0

 
1,0

 0

 
1,0

 0,3

 

 55

 
0,8

 - 0,7

 
1,5
0

 0,2

 
А44=80)

U4=-0,3

 - 0,3

 
1,2

 0

 
2,0

 0

 

 15

 
2,0

 0

 

 20

 
1,5

 0

 

 40

 
2,5

 5

 
0

В верхнем левом углу здесь и далее записываем значение ui+vj-cij. Имеем: u1+v1--c11 =0,7>0, u1+v6-c16 =0,3>0, u3+v3-c33 =0,3>0, u3+v5-c35 =0,3>0,

u4+v1-c41 =0,2>0. => По критерию оптимальности, первый план не оптимален. Далее max(0,7;0,3;0,3;0,3;0,2)=0,7. => Поместим перевозку в клетку А1В1,сместив 20=min(20,50) по циклу, указанному в таблице штрихом. Получим новую таблицу. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u3+v4=0,8, u4+v3=2, u4+v4=1,5, u4+v5=2,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,8, u3=-1, u4=-0,3,v3=2,3,v5=2,8,v6=0,3. Составим таблицу 3. :

Таблица 3. - Проведение итераций

 Цеха

Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=2,3

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

 0

 
А1 1=50)

U1=0

Овал: +

 0

 
1,0

 20

 

Овал: -

 - 0,7

 

 30

 
2,0

 - 0,7

 
3,0

 - 0,7

 
2,5

 0,3

 
3,5
0

 0

 
А22=20)

U2=-0,6

Овал: -

 - 1,6

 

 20

 
0,4

 0,7

 
3,0

Овал: +

 - 0,8

 
1,0

 - 0,8

 
2,0

 - 0,3

 
3,0
0

 -0,7

 
А33=75)

U3=-1

 0

 
0,7

Овал: +

 0,3

 

 20

 
1,0

 0

 
1,0

Овал: -

 0,3

 

 55

 
0,8

 - 0,7

 
1,5
0

 -0,5

 
А44=80)

U4=-0,3

 - 0,3

 
1,2

 0

 
2,0

Овал: -

 0

 

 15

 
2,0

Овал: +

 0

 

 20

 
1,5

 0

 

 40

 
2,5

 5

 
0

Стоимость 2-ого плана:

D2=1•20+2•30+0,4•20+1•20+0,8•55+2•15+1,5•20+2,5•40=312.

Имеем:u1+v6-c16 =0,3>0, u2+v3-c23 =0,7>0, u3+v3-c33 =0,3>0, u3+v5-c35 =0,3>0. => По критерию оптимальности, второй план не оптимален. Далее max(0,3;0,7;0,3;0,3)=0,7 => Поместим перевозку в клетку А2В3,сместив 15=min(20,30,55,15) по циклу, указанному в таблице штрихом. Получим новую таблицу. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u3+v4=0,8, u2+v3=1, u4+v4=1,5, u4+v5=2,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,8, u3=-1, u4=-0,3,v3=1,6, v5=2,8, v6=0,3. Составим таблицу 3.:

Таблица 3. - Проведение итераций

 Цеха

Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=1,6

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

 0

 
А1 1=50)

U1=0

 0

 
1,0

 35

 

 -1,4

 

 15

 
2,0

 - 0,7

 
3,0

 - 0,7

 
2,5

 0,3

 
3,5
0

 0

 
А22=20)

U2=-0,6

 - 1,6

 

 5

 
0,4

 0

 
3,0

 15

 

 - 0,8

 
1,0

 - 0,8

 
2,0

 - 0,3

 
3,0
0

 -0,7

 
А33=75)

U3=-1

 0

 
0,7

 -0,4

 

 35

 
1,0

 0

 
1,0

Овал: -

 0,3

 

 40

 
0,8

Овал: +

 - 0,7

 
1,5
0

 -0,5

 
А44=80)

U4=-0,3

 - 0,3

 
1,2

-0,7

 
2,0

 0

 
2,0

Овал: +

 0

 

 35

 
1,5

Овал: -

 0

 

 40

 
2,5

 5

 
0

Стоимость 3-его плана:

D3=1•35+2•15+0,4•5+1•15+0,8•40+1•35+1,5•35+2,5•40=301,5.

Имеем:u1+v6-c16 =0,3>0,u3+v5-c35 =0,3>0. => По критерию оптимальности, третий план не оптимален. Далее max(0,3;0,3)=0,3. => Поместим перевозку в клетку А3В5,сместив 40=min(40,40) по циклу, указанному в таблице штрихом. Получим новую таблицу. Чтобы 4-ый план был невырожденным, оставим в клетке А4В5 нулевую перевозку. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u4+v5=2,5, u2+v3=1, u4+v4=1,5, u3+v5=1,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,5, u3=-1,u4=0, v3=1,6, v5=2,5, v6=0. Составим таблицу 3. :


Таблица 3. - Проведение итераций

 Цеха

Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=1,6

B4

(b4=75)

v4=1,5

B5

(b5=40)

v5=2,5

B6

(b6=5)

v6=0

 0

 
А1 1=50)

U1=0

 0

 
1,0

 35

 

 - 1,4

 

 15

 
2,0

 - 1

 
3,0

 - 1

 
2,5

0

 
3,5
0

 0

 
А22=20)

U2=-0,6

 - 1,6

 

 5

 
0,4

 0

 
3,0

 15

 

 - 1,1

 
1,0

 - 1,1

 
2,0

 - 0,6

 
3,0
0

 -0,7

 
А33=75)

U3=-1

 0

 
0,7

 -0,4

 

 35

 
1,0

 -0,3

 
1,0

0

 
0,8

 40

 

 - 1

 
1,5
0

 -0,2

 
А44=80)

U4=0

 0

 
1,2

-0,4

 
2,0

 0

 
2,0

 0

 

 75

 
1,5

 0

 

 0

 
2,5

 5

 
0

Стоимость 4-ого плана:

D4=1•35+2•15+0,4•5+1•15+1•35+1,5•40+1,5•75=289,5.

Для всех клеток последней таблицы выполнены условия оптимальности:

1) ui+vjij=0 для клеток, занятых перевозками;

2) ui+vjij≤0 для свободных клеток.

Несодержательные ответы:

Прямой ЗЛП:

 35 15 0 0 0 0

 5 0 15 0 0 0

 X = 0 35 0 0 40 0

 0 0 0 75 0 5

 min=289,5.

Двойственной ЗЛП:


U1=0 ; U2=-0,6 ; U3=-1 ; U4=0 ; V1=1 ; V2=2 ; V3=1,6 ; V4=1,5 ; V5=2,5 ; V6=0.

max=289,5.

Так как min=max, то по критерию оптимальности найдены оптимальные решения прямой и двойственной ЗЛП. Содержательный ответ: Оптимально перевозить так:

Из А1 вB1 – 35 сборочных агрегатов;

Из А1 вB2 – 15 сборочных агрегатов;

Из А2 вB1 – 5 сборочных агрегатов;

Из А2 вB3 – 15 сборочных агрегатов;

Из А3 вB2 – 35 сборочных агрегатов;

Из А3 вB5 – 40 сборочных агрегатов;

Из А4 вB4 – 75 сборочных агрегатов.

При этом стоимость минимальна и составит Dmin=289,5. 5 сборочных агрегатов необходимо оставить на складе А4 для их последующей перевозки в другие Цеха.


Список использованной литературы

1. Е.Г. Гольштейн, Д.Б. Юдин «Задачи линейного программирования транспортного типа», Москва, 2007.

2. И.Л. Акулич, В.Ф. Стрельчонок «Математические методы и компьютерные технологии решения оптимизационных задач», Рига, 2006.

3. Астафуров В.Г., Колодникова Н. - Компьютерное учебное пособие, раздел “Анализ на чувствительность с помощью двойственной задачи”, Томск-2004.

4. Алесинская Т.В. - Задачи по исследованию операций с решениями. Москва, 2008.

5. Смородинский С.С., Батин Н.В. - Оптимизация решений на основе методов и моделей математического программирования: Учебное пособие. Воронеж, 2009


Информация о работе «Применение методов линейного программирования для оптимизации стоимости перевозок»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 15840
Количество таблиц: 10
Количество изображений: 3

Похожие работы

Скачать
34881
6
0

... во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные. 2. Области применения и ограничения использования линейного программирования для решения экономических задач Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление ...

Скачать
34424
6
3

... задачи линейного программирования, они очень сложны и решаются специальными, обычно многостадийными приемами с использованием эвристических элементов. 3. Решение задач   3.1. Решение задачи линейного программирования   3.1.1.Постановка задачи Сформулируем задачу: Определить значения переменных, обеспечивающие минимизацию целевой функции. Составим целевую функцию и зададим ограничения. ...

Скачать
31981
11
10

... переменных, доставляющих экстремум линейной целевой функции при m ограничениях в виде линейных равенств или неравенств. Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи: ·  рационального использования сырья и материалов; задачи оптимизации раскроя; ·  оптимизации производственной программы ...

Скачать
7619
6
7

... 1 500 А2 4 3 2 4 5 300 А3 3 7 5 4 1 100 Потребности 150 350 200 100 100   Решение: 1. Данная задача является транспортной задачей линейного программирования, закрытой моделью. 1)  Создадим форму для решения задачи, т.е. создадим матрицу перевозок. Для этого необходимо выполнить резервирование изменяемых ячеек: в блок ячеек В3:F5 вводится «1». Таким образом, ...

0 комментариев


Наверх