2.                Рассмотреть те же вопросы для случая произвольного линейного оператора.


§2 Структура графа состояний для линейного оператора над Zp

Введение

Рассмотрим множество  и линейный оператор  такое, что y – линейный оператор над полем Zp, в частности, этот оператор может задавать изменение состояния некоторого одномерного клеточного автомата с p состояниями.

Будем рассматривать граф состояний , для которого . Основной целью исследования является изучение структуры графа .

Одним из важных свойств оператора y, которое будет использоваться в дальнейшем, является его аддитивность:

Для исследования структуры графа Gyрассмотрим следующую нумерацию вершин нулевого дерева (см. рис. 2.1).

 – вершина, находящаяся на m ярусе, при этом она входит в  

(), смысл этих обозначений станет ясным позже. Важно то, что в этих обозначениях в вершину  входят , при этом вершины  входят в  (в нашем случае.

Рис. 2.1

 

Теорема 2.1

Пусть задана цепь:  тогда .

Доказательство:

Воспользуемся методом математической индукции.

База m=1:

 , действительно  причем различные вершины, ч.т.д.

Пусть теорема верна для m = l-1, т.е.

Докажем, что  Тем, самым, по построению , мы покажем, что .

Действительно, в силу линейности:

Теорема 2.1 доказана.

Назовем дерево с корнем en = (0,0,…,0) – «нулевым» деревом, тогда для него верна следующая теорема.

Теорема 2.2

«Нулевое» дерево – p-нарное дерево с точностью до петли в корне (0,0..,0).

Доказательство:

По теореме 2.1 единственная цепь из висячей вершины в (0,0,..0) однозначным образом определяет все элементы дерева (различность определяемых вершин очевидна, и следует из простоты p).

Теорема 2.3

Каждое дерево притягиваемого каждой точкой каждого цикла графа Gy изоморфно нулевому» дереву.

Доказательство:

Для любых последовательностей k и l, находящихся на одном ярусе какого-то дерева, для которых выполняется условие:

верно равенство:

,

где ―одна из последовательностей «нулевого» дерева на n-ном ярусе (сумма в поле ) (Следует из теоремы 2.1).

Используя полученное соотношение можно достроить любое дерево до дерева изоморфного «нулевому».


§3 ACS-автомат §3.1 Постановка задачи

В данной работе рассматривается клеточный автомат (одномерный), функционирование которого осуществляется по следующим правилам:

Дана полоска 1n (сам автомат), все клетки, которой находятся в состояниях «0» и «1». Изменение состояния клетки определяется следующим образом: данная клетка переходит в состояние «1», если её соседи находятся в разных состояниях, и в «0»,если её соседи находятся в одинаковых состояниях. Клетки, находящиеся по краям переходят в то же состояние, которое было у единственной соседней клетки в предыдущий момент времени.

По полоске длины n будем определять вектор , где :

Рассмотрим множество  и отображение  такое, что

(здесь и ниже  – операция сложения по mod p=2, т.е. операция сложения в поле Z2).

Будем рассматривать граф состояний , для которого . Основной целью исследования является изучение структуры графа .

Для начала рассмотрим некоторые определения и обозначения, которые будут использоваться в дальнейшем в работе:

·                   Ориентированное дерево — это ориентированный граф без циклов, в котором из каждой вершины, кроме одной, называемой корнем ориентированного дерева, выходит ровно одно ребро (более подробно структуры дерева будет определена позже).

·                   m-й ярус – множество вершин дерева, находящихся на расстоянии m от корня.

·                   Частичный порядок на вершинах: , если вершины u и v различны и вершина u лежит на единственном элементарном пути, соединяющем вершиной v с корнем дерева.

·                   Корневое поддерево с корнем v — подграф .

·                   Множество  назовем множеством висячих вершин графа .

§3.2 Краткий обзор предыдущих результатов

В прошлом году на ряде конференций (см. Используемые источники) была представлена работа по клеточным автоматам, в которой был исследован частный случай линейного оператора и найдены высоты деревьев для последовательностей, состоящих из 2n-1 элементов. В ней были представлены следующие утверждения, которые будут использоваться в дальнейшем:

Утверждение 3.2.1


.

Утверждение 3.2.2

 

1. ;

2. , причем  

3. ;

4. .

 

Утверждение 3.2.3

 

;  и .

Предисловие

В параграфе будет рассказано о свойствах графа состояний оператора j, а именно будет описана его структура.

  §3.3 Структура Gj при p=2 §3.3.1 Исследование структуры

Пользуясь утверждением 3.2.2, мы получаем, что среди всех последовательностей можно выделить следующие:


Информация о работе «Структура графа состояний клеточных автоматов определённого типа»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 19944
Количество таблиц: 3
Количество изображений: 5

Похожие работы

Скачать
795696
13
12

... за собой её гибель, либо требующие подключения к процессу самоуправления суперсистемы иерархически высшего управления. Так соборный интеллект видится индивидуальному интеллекту с точки зрения достаточно общей теории управления; возможно, что кому-то всё это, высказанное о соборных интеллектах, представляется бредом, но обратитесь тогда к любому специалисту по вычислительной технике: примитивная ...

Скачать
13218
0
5

... 000 - , 001 - , 010 - , 011 - , 100 - , 101 - , 110 - , 111 - . Фазовое пространство  изображено на рисунке 1.2.3. Рис. 1.2.3. Фазовое пространство . Теорема 1.2.1. Пусть  – мономиальная динамическая система. Тогда  – система конечных элементов тогда, и только тогда, когда и  – системы конечных элементов. Доказательство. Из следствий 1.2.1 и 1.2.3, если  – система конечных ...

Скачать
670947
1
0

... все содержание посылок, поскольку оно необходимо для вывода, имеет нечувственный характер. (аксиомы, постулаты). VI. Интуитивизм, индивидуалистический эмпиризм и априоризм критической философии в их отношении к теории элементарных методов знания. Три ответа на вопрос о происхождении общих суждений: 1) Путем прямых методов (прямой индукции) = интуитивизм. 2) Общих суждений нет Только иллюзия. ( ...

Скачать
876227
1
2

... Замечат. С.: Полемон, Герод Аттик, Аристид, Либаний. Ср. Schmid, "Der Atticismus in seinen Hauptvertretern" (1887-97). 17. Принцип детерминизма в философии. Индетерминизм. Детерминизм (от лат. determino - определяю), философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и ...

0 комментариев


Наверх