1.3.2. Про вибір фізичної моделі об’єкта вимірювання
Правильний вибір фізичної моделі об’єкта вимірювання (вимірюваної величини) є найголовнішою передумовою обґрунтування методу вимірювання і ЗВТ, а отже, одержання результату вимірювання з допустимою похибкою. Прийнята фізична модель ОВ, з одного боку, мусить відображати певні реальні властивості цього об’єкта, а з другого боку, - відповідати меті вимірювання, тобто враховувати для вирішення якого завдання (технічного, наукового та ін.) проводяться вимірювання. Так, у прикладі 1.2 в прийнятій фізичній моделі ОВ враховані як реальні властивості вольтметра (активна і ємнісна складові вхідного опору), так і мета вимірювання - перевірка відповідності складових його вхідного опору заданим значенням. Якщо б мета вимірювання була іншою (наприклад, перевірка можливості застосування вольтметра для вимірювання в конкретному радіотехнічному колі), то і фізична модель ОВ була б іншою (зокрема, врахування паразитних індуктивностей і ємностей та їх розподілений характер).
Таким чином, фізичною моделлю ОВ може служити його приблизний опис, який дозволяє виділити параметр (або функцію параметрів моделі), що відображає властивість ОВ, необхідну для вирішення задачі вимірювання. Цей опис мусить досить добре відображати дві групи властивостей ОВ: першу групу складають властивості, для визначення яких проводиться вимірювання, а другу групу - властивості, які не представляють інтересу в даній задачі вимірювання, але можуть впливати на результат вимірювання, тобто призводять до похибок.
Моделювання ОВ, яке являє собою перший необхідний етап планування процесу вимірювання, найменш вивчена і мало відображена в науково-технічній літературі процедура серед усіх процедур, які проводяться при вимірюваннях. Основною проблемою моделювання ОВ є вибір таких моделей, які можна вважати (при передбачуваних якісних властивостях ОВ і при поставленій задачі вимірювання) адекватними ОВ. Так, у прикладі 1.2 фізична модель ОВ істотно поскладнішає, якщо вважати, що індуктивність і ємність вхідних ланцюгів є розподіленими параметрами.
Тут виникає парадоксальна ситуація. З одного боку, для того щоб вивчити певну властивість ОВ шляхом вимірювань, необхідно заздалегідь мати деяку (інколи значну) інформацію про його властивості, тобто початкову апріорну інформацію. Без неї неможливо встановити адекватну фізичну модель ОВ (вимірюваної величини) з усіма її властивостями, яку треба знати для вибору методу вимірювання і ЗВТ. Так, у прикладі 1.1 (з електричною напругою) перший варіант фізичної моделі ОВ (випадковий процес) настільки загальний, що завжди може вважатися адекватним. Але така модель не дозволяє вибрати метод вимірювання і ЗВТ, якщо її не конкретизувати. Потрібно додатково знати хоча б частотний спектр прийнятого випадкового сигналу і діапазон можливих значень амплітуди напруги, а також характер сигналу: стаціонарний чи нестаціонарний, ергодичний чи неергодичний. Тому, з другого боку, для одержання початкових даних про ОВ необхідно провести деякі спеціальні, попередні вимірювання, які, в свою чергу, також потребують початкових, менш строгих знань про ОВ.
Отже, адекватна фізична модель ОВ може встановлюватися тільки на основі початкової інформації про мету і об’єкт вимірювання. Звідси витікає, що потрібні, по-перше, методи установлення адекватних фізичних моделей ОВ на основі початкових даних і, по-друге, методи перевірки цієї адекватності. Відносно перших і других методів існує в основному якісне уявлення, але воно строго не формалізується. Установлення адекватних фізичних моделей ОВ – це поки що складна, творча, неформалізована задача. Її вирішення потребує високої кваліфікації, досвіду і, навіть, якоюсь мірою інженерної інтуїції, тобто установлення раціональних або найбільш простих фізичних моделей ОВ знаходиться десь на грані науки і майстерності. Одночасно треба розв’язувати дві важливі задачі:
1) фізична модель ОВ мусить адекватно відображати всі властивості цього об’єкта, дозволяючи вирішувати задачу вимірювання з необхідною точністю (тобто оцінити властивості ОВ, визначення яких необхідно для вирішення задачі вимірювання, та інші властивості ОВ, що можуть впливати на результати вимірювань);
2) фізична модель ОВ мусить бути по можливості простою, тобто утримувати мінімум параметрів як тих, що беруться за вимірювані величини, так і тих, які можуть небажано впливати на результати вимірювань (наприклад, неінформативні параметри вхідного сигналу ЗВТ).
Конкретні рекомендації для установлення фізичної моделі ОВ на теперішній час навряд чи можуть бути видані. Поки це визначається кваліфікацією і досвідом експериментатора, який мусить завжди пам’ятати, що можлива невідповідність вибраної вимірюваної величини потрібній властивості ОВ та невідповідність фізичної моделі ОВ реальному об’єкту обумовлюють деяку складову похибки вимірювання. При цьому можлива неадекватність вибору фізичної моделі вимірюваної величини переноситься в область неправильності одержаного при вимірюванні результату.
Узагальнюючи сказане вище про процес вимірювання, відзначимо велике значення підготовки до нього, яка насамперед включає:
- аналіз постановки вимірювальної задачі;
- вибір фізичної моделі ОВ;
- вибір методу вимірювання і ЗВТ;
- забезпечення необхідних умов для вимірювання;
- підготовку оператора (експериментатора).
Кваліфікований аналіз правильності формулювання вимірювальної задачі створює передумови для отримання вірогідних результатів вимірювання, тому що дозволяє виключити проведення некоректних вимірювань. При такому аналізі доцільно, передусім, з’ясувати два важливих питання:
1) які параметри ОВ (фізичні величини) підлягають вимірюванням;
2) з якою точністю (похибками) необхідно одержати результати вимірювань цих параметрів і в якій формі їх слід відобразити, щоб вони відповідали меті вимірювальної задачі.
З першим питанням тісно пов’язаний вибір фізичної моделі ОВ, яка повинна задовольняти вимоги адекватності і стабільності вимірюваних параметрів у часі. Строго кажучи, вимірювати можна тільки фізичні величини постійного розміру. Але реально це неможливо. Тому допускається деяка нестабільність вимірюваних ФВ (параметрів ОВ) під час вимірювання, але вона не повинна перевищувати приблизно 10 % від заданої похибки вимірювань.
Точність (похибка) вимірювань кожного з параметрів фізичної моделі ОВ залежить від методу вимірювань, ЗВТ і підтримання необхідних умов вимірювання, кваліфікації оператора. Зокрема, зрозуміло, що чим точніше ЗВТ, тим точніше (якісніше) результати вимірювань. Але з підвищенням точності ЗВТ зростає вартість вимірювань. У той же час одна з важливих умов планування вимірювального експерименту полягає в досягненні заданої точності вимірювань при обмежених витратах на них. Таким чином, ЗВТ неможливо розглядати автономно, поза зв’язком з ОВ, його фізичною моделлю, методом вимірювання, умовами проведення вимірювань і кваліфікацією оператора. Необхідно всі ці елементи процесу вимірювання розглядати комплексно при плануванні і підготовці вимірювального експерименту, який включає до того ж обґрунтування кількості вимірювань фізичної величини і методів обробки їх результатів [5,8,25].
... ї інформації; б) функціональне перетворення сигналу вимірювальної інформації; в) подання вимірювальної інформації у тій чи іншій формі сповіщення (число, кодовий сигнал, діаграма і т.д.). Послідовне перетворення вимірювальних сигналів є практично єдиним методом, на основі якого може бути побудований будь-який вимірювальний канал (приладу, установки або системи). Тому вимірювальний канал можна ...
... дипломного проекту. Рисунок 3.1 – Схема електрична структурна пристрою контролю середнього значення кутової швидкості 4. Розробка принципової схеми комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом 4.1 Аналіз лінійного фотоприймача Фотоелектричні перетворювачі площа-напруга (ППН) використовуються у багатьох пристроях, таких як перетворювач ...
... температури, – як в потязі та і за межами вагона, запис, відтворення, зміна та доповнення голосових повідомлень, які в подальшому прослухає користувач системи. Інформаційно-вимірювальна системи для пасажирських вагонів залізничного транспорту живиться напругою живлення 5 В. 2.2 Сенсори ІВС для вимірювання фізичних величин 2.2.1 Датчик температури на базі мікросхеми TMP36 Температура – є ...
... результатами акредитації видається атестат акредитації. Спори, пов’язані з відмовою у видачі атестата акредитації, розглядаються в судовому порядку. Законодавчі вимоги до застосування засобів вимірювальної техніки, вимірювань і результатів вимірювань Застосування, ввезення, виробництво, ремонт, продаж і прокат ЗВТ повинні відповідати таким вимогам Закону України “Про метрологію і метрологі ...
0 комментариев