2. СТАТИЧЕСКИЙ РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ

Расчет рамы может выполняться одним из методов строительной механики, причем для сложных рам общего вида – с помощью ЭВМ.

Между тем, в большинстве одноэтажных промышленных зданий ригели располагаются на одном уровне, а их изгибная жесткость в своей плоскости значительно превосходит жесткость колонн и поэтому может быть принята равной EJ=Ґ. В этом случае наиболее просто расчет рам производится методом перемещений. Основную систему получим введением связи, препятствующей горизонтальному смещению верха колонн (рис.7.а.).

Определение усилий в стойках рамы производим в следующем порядке:

– по заданным в п.1.2. размерам сечений колонн определяем их жесткость как для бетонных сечений в предположении упругой работы материала;

– верхним концам колонн даем смещения  и по формуле приложения 20 находим реакцию  каждой колонны и рамы в целом

 где n – число колонн поперечной рамы;

– по формулам приложения 20 определяем реакции  верхних опор стоек рамы в основной системе метода перемещений и суммарную реакцию в уровне верха колонн для каждого вида нагружения;

–для каждого из нагружений (постоянная, снеговая, ветровая, комплекс крановых нагрузок) составляем каноническое уравнение метода перемещений, выражающее равенство нулю усилий во введенной (фиктивной) связи

, (2.1)

и находим значение ; здесь – коэффициент, учитывающий пространственную работу каркаса здания.

При действии на температурный блок постоянной, снеговой и ветровой нагрузок все рамы одинаково вовлекаются в работу, пространственный характер деформирования не проявляется и поэтому принимают . Крановая же нагрузка приложена лишь к нескольким рамам блока, но благодаря жесткому диску покрытия в работу включаются все остальные рамы. Именно в этом и проявляется пространственная работа блока рам. Величина  для случая действия на раму крановой (локально приложенной) нагрузки может быть найдена по приближенной формуле:

, (2.2)

где:

– общее число поперечников в температурном блоке;

– расстояние от оси симметрии блока до каждого из поперечников, a– то же для второй от торца блока поперечной рамы (наиболее нагруженной);

– коэффициент, учитывающий податливость соединений плит покрытия; для сборных покрытий может быть принят равным 0,7;

=1, если в пролете имеется только 1 кран, в противном случае =0,7;

– для каждой стойки при данном нагружении вычисляем упругую реакцию в уровне верха:

(2.3)

– определяем изгибающие моменты M, продольную N и поперечную Q силы в каждой колонне как в консольной стойке от действия упругой реакции  и внешних нагрузок.

Для подбора сечений колонн определяем наибольшие возможные усилия в четырех сечениях: I-I – сечение у верха колонны; II-II – сечение непосредственно выше подкрановой консоли; III-III – то же – ниже подкрановой консоли; IV-IV – сечение в заделке колонны.

2.1 Геометрические характеристики колонн

Размеры сечений двухветвевых колонн приведены на рис. 2.

Для крайней колонны:

количество панелей подкрановой части , расчетная высота колонны НК=15,75 м, в том числе подкрановой части НН=11,8 м, надкрановой части НВ=3,95 м, расстояние между осями ветвей с=0,95 м.

Момент инерции надкрановой части колонны

;

Момент инерции одной ветви

;

Момент инерции подкрановой части

;

Отношение высоты надкрановой части к полной высоте колонн

;

отношение моментов инерции подкрановой и надкрановой частей колонн:

.

По формулам приложения 20 вычисляем вспомогательные коэффициенты:

- ;

- ;

- .

Реакция верхней опоры колонны от ее единичного смещения:

.

 

для средней колонны:

HK=12,15 м, в т.ч. НН=8,2 м, НВ=3,95 м.

;

;

; ;

-  принимаем равным 0;

- ;

- .

.

Суммарная реакция .


Информация о работе «Проектирование и расчеты одноэтажного промышленного здания»
Раздел: Строительство
Количество знаков с пробелами: 35566
Количество таблиц: 5
Количество изображений: 26

Похожие работы

Скачать
35318
7
11

... . При расчете рамы считают, что сила поперечного торможения тележки крана распределяется поровну на все колеса одной стороны крана и через подкрановую балку и тормозные конструкции передаются на каркас (поперечные рамы) цеха. Нормативная горизонтальная нагрузка на колесо крана Ткн = 0,5f(Qк + Gт)/n0 = 0,5·0,1(500 + 620)/2 = 28 кН, где f – коэффициент трения при торможении тележки; Qк – ...

Скачать
48327
9
21

... плиты 3х6 м, 1,32 1,1 1,45 6. Железобетонные безраскосные фермы L=18 м, 0,60 1,1 0,66 Итого 2,97 3,40 С учетом коэффициента надежности по назначению здания 2,82 3,23 Масса железобетонных элементов покрытия: ребристые плиты 3х6 м – 2,38 т; безраскосные ферма пролетом 18 м при шаге 6 м – 6,5 т. Грузовая площадь покрытия (шатра) АШ для крайней колонны: ...

Скачать
15014
0
22

... (табл. 16–20).     10. Мероприятия по охране труда Главные мероприятия при охране труда при возведении одноэтажного промышленного здания базируются на требованиях СНиП 12.03–2002 Безопасность труда в строительстве. При монтаже железобетонных и стальных элементов конструкций необходимо предусматривать мероприятия по предупреждению воздействия на работников следующих опасных и ...

Скачать
21056
2
19

... уложенных с шагом 6 м. В качестве наружных ограждающих конструкций применяются железобетонные панели размером 1,2х6 м. Для расчета элементов каркаса колонн, КЖС – все размеры принимаются в соответствии с каталогом железобетонных конструкций для одноэтажных промышленных зданий. В пояснительной записке приводится лишь расчет и подбор арматуры. Фундамент рассчитывается с учетом требований унификации ...

0 комментариев


Наверх