2.4.2 Расчет нормальных сечений на образование трещин при эксплуатационной нагрузке
Изгибающий момент от внешних нагрузок [3, п.4.5] при gf = 1
кНм,
в том числе от длительно действующих нагрузок
кНм
Момент сил обжатия относительно верхней ядровой точки равен:
кНм, [3, 129]
где Р2 = 189,36 кН [п.2.3.9].
Расстояние до верхней ядровой точки
м [3, 132]
Принимаем j = 1, [3, 135]
sb - максимальные напряжения в сжатой зоне бетона (верхней)
Упругопластический момент сопротивления относительно нижней растянутой зоны равен:
м3.
Проверка образования трещин производится из условия:
[3, 124],
где кНм [3, 125].
Так как условие [3, 124] удовлетворяется при длительной части нагрузки
(39 < 61,82), и при полной нагрузке (53,18< 61,82), в элементе трещины не возникают.
2.4.3 Расчет наклонных сечений на образование трещин
Расчет производится в сечении у грани опоры плиты (I-I) и на расстоянии длины зоны передачи напряжений в сечении (2-2) [рис. 2.7]. [3, п.4.11]
Длина зоны передачи напряжений равна:
м, [3, 11]
Рис. 2.7 - Определение напряжения в арматуре.
где и [3, табл.28]
МПа (с учетом потерь поз. 1-5) [3,табл.5];
[3, п.2.6].
Определение нормальных напряжений в бетоне от внешней нагрузки и усилия предварительного обжатия на уровне центра тяжести приведенного сечения (У=0): в сечении 2-2
МПа,
в сечении 1-1
МПа,
Определение касательных напряжений в бетоне от внешней нагрузки:
МПа,
кН,
Значение главных напряжений (растягивающих smt и сжимающих smc) в бетоне: в сечении 2-2
МПа,
МПа, МПа.
В сечении 1-1:
МПа,
МПа, МПа.
Определение коэффициента влияния двухосного сложного напряженного состояния на прочность бетона:
в сечении 2-2
; [3, 142]
где a = 0,01 для тяжелого бетона. Принимаем gb4=1, [3, 142],
в сечении 1-1
Принимаем gb4 = 1.
Проверка образования трещин наклонных к продольной оси элемента производится из условия [3, 141]
В сечении 1-1: МПа МПа - трещин нет.
В сечении 2-2: МПа МПа - трещин нет.
... –15м. 3 Объемно – планировочное решения здания Разработка объемно-планировочного решения жилого здания осуществляется в рамках усовершенствования типового проекта, с учетом природно-климатических условий. Размеры проектируемого здания в осях: 1 – 4 – 9,6 метров; А –Г – 9,6 метров. Здание – одноквартирное, двухэтажное, высотой 8,6м. Высота этажа 2,8м. Связь между этажами производится при ...
... пролетов (каркас К2) принимаем поперечные стержни диаметром 10 мм, с шагом 150 и 300 мм, также как и для каркаса К1 в крайнем пролете. 3.6 Расчет обрыва стержней в пролете , . Тогда: , . , . , , , , , , принимаем . , принимаем . 4. Проектирование и расчёт железобетонной многопустотной плиты перекрытия 4.1 Исходные данные Размеры плиты номинальные, м – 1,2х6,85 Класс ...
... 1490 1490 1490 220 220 220 220 220 1,34 1,34 1,34 1,23 1,23 58,58 84,66 94,52 27,84 61,86 В25 В20 В25 В25 В20 1.3 Обоснование выбора способа производства Производство многопустотных плит перекрытий в заводских условиях можно производить различными способами: стендовым, конвейерным и агрегатно-поточным. Стендовая технология предусматривает изготовление ...
... и ТЭП к нему. 2. Календарный план строительства. 3. График движения рабочих. 4. График завоза и расхода материалов. 5. График работы основных строительных машин. Строящееся здание – Дом быта на 15 рабочих мест. Район строительства г. Бобруйск. Грунт в районе строительства – крупный песок. Габариты здания 22,2м х 19м. Высота здания 12,1м. При производстве работ используются следующие ...
0 комментариев