3.1.3. Обоснование выбора резисторов

Все резисторы выбираются по требуемому номинальному значению и мощности. Иногда в особо точных схемах учитывается допустимое отклонение от номинальной величины сопротивления. Допустимое отклонение от номинальной величины сопротивления зависит от типа резистора: композиционный, проволочный, угольный. Выбирая резисторы по мощности, определяется мощность рассеяния на каждом резисторе отдельно по формуле P=UI, P=U2/R, P=I2R, выведенные из закона Ома. Полученная величина увеличивается в двое. Исходя из полученых значений выбирают резисторы эталонных мощностей: 0,125, 0,25, 0,5 ,1, 2 ,5, 10Вт и т.д.

3.1.4. Обоснование выбора конденсаторов

При выборе конденсаторов для радиоэлектронных устройств, приходиться решать одну из противоположных по своему характеру задач. Прямая задача – по известному стандартному напряжению конденсатора найти максимально допустимые значения переменной и постоянной составляющих рабочего напряжения. Обратная задача заключается нахождения типа и стандартного напряжения конденсаторов по рабочему режиму.

Под номинальным напряжением понимается наибольшее напряжение между обкладкам конденсатора, при котором он способен работать с заданной надёжностью в установленном диапазоне рабочих температур. Номинальное напряжение, оговоренное стандартами, называется стандартным напряжением – оно маркируется на конденсаторах, выпускаемых согласно действующих стандартов. Под рабочим напряжением подразумевается значения постоянного и переменного напряжения, которые действуют на конденсаторе при его работе.

Прямая задача нахождения рабочего напряжения по стандартному решается с помощью условий, оговоренных в действующих стандартах. Однако эти условия справедливы лишь для тех случаев, когда переменная составляющая (пульсация) напряжения на конденсаторе меняется по закону гармонического колебания.

Для решения обратной задачи – нахождения типа и стандартного напряжения конденсатора по рабочему режиму, необходимо вначале найти минимальное напряжение, а затем выбрать ближайшее к нему стандартное значение.

Величина рабочего напряжения конденсатора ограничивается тремя требованиями:

а) конденсатор не должен перегреваться;

б) перенапряжение на нём недопустимо;

в) он должен быть защищён от прохождения обратных токов, если это полярный оксидный конденсатор.

Для того чтобы конденсатор не перегревался следует рассчитать выделяемую на нём реактивную мощность. Она не должна превышать номинальную мощность конденсатора.

Чтобы защитить конденсатор от перенапряжения, рабочее напряжение на нём не должно превышать номинальное. Это условие формулируется в стандартах как сумма постоянной составляющей и амплитуды переменной составляющей рабочего напряжения не должна быть больше стандартного напряжения.

Полярные оксидные конденсаторы, помимо перегрева и перенапряжения, должны быть защищены от прохождения разрушающих обратных токов. Чтобы оксидная плёнка была непроводящей, потенциал оксидированного метала (анода) должен всегда превышать потенциал второго электрода (катода). С этой целью в стандартах оговаривается, что амплитуда переменной составляющей напряжения не должна превышать постоянную составляющую.

3.1.5 Обоснование выбора микросхем.

Основу устройства составляют интегральные микросхемы серии 561 (КМОП), построенные на полевых транзисторах. Она отличается малым потреблением электроэнергии, в отличии от других серий. Перечислим параметры некоторых из них.

К561ЛН2– шесть элементов НЕ.

1. Номинальный потребляемый ток (мкА)……………………….….0,25;

2. Номинальное напряжение питание (В)…………….……….......+5..+18;

3. Диапазон рабочих температур (ºС)………………………..-10…+70;

4. Напряжение логической единицы при Uпит=9В (В)………………..>8;

5. Напряжение логического нуля при Uпит=9В (В)………………….<3,5;

К561ТМ2- два D-триггера.

1.Напряжение питания (В) ……………………………………...+5…+10;

2.Напряжение логического нуля (В) ………………………………...<0,3;

3.Напряжение логической единицы(Uпит=10В) (В) ……………….>8.2;

4.Потребляемая мощность (мВт) ……………………………………..300;

5.Потребляемый ток (Uпит=5В) …………………………………...(мА) 5;

6.Время прохождения сигнала (нс) …………………………………....300;

КР142ЕН8А- интегральный компенсационный стабилизатор.

1. Минимальный потребляемый ток (мА)………….…..…...10

2. Номинальное выходное напряжение (В)………..………+9

3. Минимальное входное напряжение (В)………….……...+14

4. Максимальный выходной ток (А)…………………………2


3.2. Обоснование разработки трассировки печатных плат

Печатные платы – это элементы конструкций предназначенных для соединения элементов электрической цепи при помощи печатных проводников. Печатные платы состоят из диэлектрического основания, на котором расположены плоские проводники. Они обеспечивают соединение элементов. Применение печатных плат позволяет увеличить плотность монтажа. Они дают возможность получить в одном технологическом цикле проводники и экранирующие поверхности. Печатные платы гарантируют повторяемость характеристик, особенно паразитных. Повышается стойкость к механическим и климатическим воздействиям, обеспечивается унификация сложных изделий и повышается надёжность. Платы дают возможность механизировать и автоматизировать монтажно-сборочные, регулировочные и контрольные работы, при этом снижается трудоёмкость работ и стоимость изделия. Недостатком печатных плат является сложность внесения изменений в конструкцию и плохая ремонтопригодность. К печатным платам предъявляются некоторый ряд технических требований:

 Основание должно быть однородным по цвету, монолитным, без внутренних пузырей и раковин, без посторонних включений, сколов, трещин и расслоений. Допускаются одиночные вскрошения металла, царапины, следы от удаления отдельных не вытравленных участков, контурное просветление.

 Проводящий рисунок должен быть четкий, с ровными краями, без вздутий, следов инструмента. Отдельные протравы (5 точек на 1 дм2) при условии, что оставшаяся ширина проводника соответствует минимально допустимой по чертежу.

 Допускаются риски глубиной менее 25 мкм и длинной до 6 мм.

 Допускаются отслоения проводника в одном месте не более 4 мм.

 При наличии критических дефектов, печатные проводники могут дублироваться объёмными не более 5 для плат 120х180 мм и не более 10 для плат большего размера.

Связь между сторонами платы осуществляется при помощи монтажных отверстий. При помощи их крепятся элементы. Вокруг монтажного отверстия делается ободок, который называется контактной площадкой. Его ширина не менее 50 мкм. Разрывы не допускаются. Допускаются отдельные отслоения контактных площадок до 2% и их ремонт при помощи эпоксидного клея, после чего они должны выдерживать три пайки.

При воздействии повышенной температуры, контактные площадки должны держать температуру порядка 290 °С не менее 10 сек без разрывов и отслоения.

 Печатные платы классифицируются по параметрам и применению.

 Односторонние печатные платы просты и экономичны. Применяются для монтажа бытовой радиоаппаратуры, техники связи, источников питания и т.д. Обычно они выполняются на слоистом или листовом основании: гетинакс, текстолит, стеклотекстолит. Монтажные отверстия могут быть металлизированными и не металлизированными. На одной стороне расположен печатный монтаж, а на другой объёмные элементы; крепёж, арматура, тепло отводы и т.д.

 Двухсторонние печатные платы. У них печатный рисунок располагается с двух сторон, а элементы, как правило, с одной стороны. Связь между сторонами осуществляется при помощи металлизированных сквозных отверстий.

Проводные печатные платы применяются в опытном производстве при макетировании. На плате делают контактные площадки, на которые размещают элементы. Связь между ними осуществляют при помощи проводов.

Печатные проводники желательно располагать параллельно друг к другу. При необходимости угол печатного проводника 45°.

Узкие проводники легко отслаиваются. Для их закрепления используют сквозные отверстия через каждые 25 – 30 мм, или расширяются контактные площадки 1х1 мм. Если ширина экрана более 5 мм, то в экране надо делать вырезы, т.к. при нагреве медь расширяется и может покоробиться.

Печатные платы в зависимости от минимальной ширины печатных проводников и минимального зазора между ними делят на три класса. К классу 1 относятся платы с пониженной плотностью монтажа, у которых ширина проводников и зазор между ними должен быть не менее 0.5 мм. Класс 2 образуют платы с повышенной плотностью монтажа, имеющие ширину проводников и зазоры не менее 0.25 мм. Платы с шириной проводников и зазорами до 0.15 мм (класс 3) имеют высокую плотность монтажа. Платы этого класса следует применять только в отдельных, технически обоснованных случаях.

Чертежи печатных плат выполняют на бумаге, имеющей координатную сетку, нанесенную с определенным шагом. Наличие сетки позволяет не ставить на чертеже размеры на все элементы печатного проводника.

Координатную сетку наносят на чертеж с шагом 2.5 или 1.25 мм. Шаг 1.25 мм применяют в том случае, если на плату устанавливают многовыводные элементы с шагом расположения выводов 1.25 мм. Центры монтажных и переходных отверстий должны быть расположены в узлах (точках пересечения линий) координатной сетки. Если устанавливаемый на печатную плату элемент имеет два вывода или более, расстояние между которыми кратно шагу координатной сетки, то отверстия под все такие выводы должны быть расположены в узлах сетки. Если устанавливаемый элемент не имеет выводов, расстояние между которыми кратно шагу координатной сетки, то один вывод следует располагать в узле координатной сетки.

Диаметр отверстия в печатной плате должен быть больше диметра вставляемого в него вывода, что обеспечит возможность свободной установки электрорадиоэлемента. При диаметре вывода до 0.8мм диаметр неметаллизированного отверстия делают на 0.2 мм больше диаметра вывода; при диаметре вывода более 0.8 мм – на 0.3 мм больше.

Диаметр металлизированного отверстия зависит от диаметра вставляемого в него вывода и от толщины платы. Связано это с тем, что при гальваническом осаждении металла на стенках отверстия малого диаметра, сделанного в толстой плате, толщина слоя металла получится неравномерной, а при большом отношении длины к диаметру некоторые места могут остаться непокрытыми. Диаметр металлизированного отверстия должен составлять не менее половины толщины платы.

Чтобы обеспечить надежное соединение металлизированного отверстия с печатным проводником, вокруг отверстия делают контактную площадку. Контактные площадки отверстий рекомендуется делать в виде кольца.

Для неметаллизировавнных отверстий и торцов плат шероховатость поверхности делают такой, чтобы параметр шероховатости Rz< 80. У металлизированных отверстий и торцов шероховатость должна быть лучше: Rz< 40.

Отверстия на плате нужно располагать таким образом, чтобы расстояние между краями отверстий было не меньше толщины платы. В противном случае перемычка между отверстиями не будет иметь достаточно механической прочности.

Контактные площадки, к которым будут припаиваться выводы от планарных корпусов, рекомендуется делать прямоугольными.

Печатные проводники рекомендуется выполнять прямоугольной конфигурации, располагая их параллельно линиям координатной сетки.

Проводники на всем их протяжении должны иметь одинаковую ширину. Если один или несколько проводников проходят через узкое место, ширина проводников может быть уменьшена. При этом длина участка, на котором уменьшена ширина, должна быть минимальной.

Следует иметь в виду, что узкие проводники (шириной 0.3 – 0.4 мм) могут, отслаивается от изоляционного основания при незначительных нагрузка. Если такие проводники имеют большую длину, то следует увеличивать прочность сцепления проводника с основанием, располагая через каждые 25 - 30 мм по длине проводника металлизированные отверстия или местные уширения типа контактной площадки с размерами 1 х 1 или более.

Если проводник проходит в узком месте между двумя отверстиями, то нужно прокладывать его так, чтобы он был перпендикулярен линии, соединяющей центры отверстий. При этом можно обеспечить максимальную ширину проводников и максимальное расстояние между ними.

Экраны и проводники шириной более 5 мм следует выполнять с вырезами. Связано это с тем, что при нагреве плат в процессе пайки изоляционного основания могут выделяться газы. Если проводник или экран имеют большую ширину, то газы, не находят выхода могут вспучивать фольгу. Формы вырезов может быть произвольной.

Печатную плату с установленными на ней электрорадиоэлементами называют печатным узлом.

Если ЭРЭ имеют штыревые выводы, то их устанавливают в отверстия печатной платы и запаивают. Если корпус ЭРЭ имеет планарные выводы, то их припаивают к соответствующим контактным площадкам внахлест.

ЭРЭ со штыревыми выводами нужно устанавливать на плату с одной стороны. Это обеспечивает возможность использования высопроизводительных процессов пайки, например пайку «волной». Для ЭРЭ с планарными выводами пайку «волной» применять нельзя. Поэтому их можно располагать с двух сторон печатной платы. При этом обеспечивается большая плотность монтажа, так как на одной и той же плате можно расположить большее количество элементов.

При размещении ЭРЭ на печатной плате необходимо учитывать следующее:

полупроводниковые приборы и микросхемы не следует располагать близко к элементам, выделяющим большое количество теплоты, а также к источникам сильных магнитных полей (постоянным магнитам, трансформаторам и др.);

должна быть предусмотрена возможность конвенции воздуха в зоне расположения элементов, выделяющих большое количество теплоты;

должна быть предусмотрена возможность легкого доступа к элементам, которые подбирают при регулировании схемы

Если элемент имеет электропроводный корпус и под корпусом проходит проводник, то необходимо предусмотреть изоляцию корпуса или проводника. Изоляцию можно осуществлять надеванием на корпус элемента трубок из изоляционного материала, нанесением тонкого слоя эпоксидной смолы на плату в зоне расположения корпуса, наклеиванием на плату тонких изоляционных прокладок.

Эти элементы могут работать при более жестких механических воздействиях, чем установленные.

В зависимости от конструкции конкретного типа элемента и характера механических воздействий, действующих при эксплуатации (частота и амплитуда вибрации, значение и длительность ударных перегрузок и др.), ряд элементов нельзя закреплять только пайкой за выводы – их нужно крепить дополнительно за корпус.

При установке транзисторов в аппаратуре работающей в условиях вибрации и ударов, корпус должен быть приклеен к плате или к переходной втулке.

ЭРЭ должны располагаться на печатной плате так, чтобы осевые линии их корпусов были параллельны или перпендикулярны друг другу.

На платах с большим количеством микросхем в однотипных корпусах их следует располагать правильными рядами.

Зазор между корпусами должен быть менее 1.5 мм (в одном из направлений).

Элементы, имеющие большую массу, следует размещать вблизи мест крепления платы или выносить их за пределы платы и закреплять на шасси аппарата.

Так как печатные платы имеют малые расстояния между проводниками, то воздействие влаги может привести к таким ухудшениям сопротивления изоляции, при которых будет нарушаться нормальная работа схемы. Поэтому печатные узлы, которые будут работать в сложных климатических условиях, необходимо покрывать слоем лака.

Используемые для этого лаки должны иметь следующие свойства: хорошую адгезию к материалу платы и печатным проводникам; малую влагопоглощаемость; большое сопротивление изоляции; способность быстро высыхать при невысокой плюсовой температуре; отсутствие растрескивания в диапазоне рабочих температур.


Информация о работе «Конструирование»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 44062
Количество таблиц: 10
Количество изображений: 4

Похожие работы

Скачать
212769
18
7

... является также возникновение у ребенка желания показать результаты своего труда взрослому, заслужить похвалу. Глава 3. Экспериментальное исследование возможностей занятий по конструированию для коррекции зрительного восприятия детей с нарушениями зрения   3.1 Констатирующий этап С целью выявления эффективности конструирования в коррекции зрительного восприятия детей дошкольного возраста с ...

Скачать
170408
6
43

... ; фС- красный; 0-шина: изолированный контроль– белый; заземлённая нейтраль–чёрный. 2. ~; фаза–красный; 0–жёлтый. 3. –; (+)–красный; (–)–синий; нейтраль–белый.  Лекция 20. "Основы конструирования" Основы патентоведения 1.0 Введение –Изобретательство – важный фактор ТП.– Изобретательское право (ИП).– Открытия, Изобретения, Промышленные образцы – объекты изобретательского права (Субъекты ...

Скачать
18631
4
10

... 14,0 Горизонт подземных вод от поверхности земли , м 1,5 В скобках указана плотность грунта во взвешанном состоянии. Мощность пласта в колонне изм-ся от кровли до его подошвы. 3.2. Расчет и конструирование свайных фундаментов Прежде всего необходимо выбрать тип сваи, назначить ее длину и размеры поперечного сечения. Длину сваи определяют как сумму L=L1+L2+L3. L1 – глубина заделки ...

Скачать
53346
1
3

... системы электронных учебных материалов на основе технологии конструирования ЭУМ в среде MathCAD Происходит формирование умений и навыков конструирования электронных учебных материалов в среде MathCAD на творческом уровне В системе профессиональной подготовки учителей математики, физики, информатики недостаточно отражены подходы к созданию и применению электронных учебных материалов с ...

0 комментариев


Наверх