2.3 Энергетика
Атомная электростанция (АЭС) — новый современный тип предприятий по производству электроэнергии. В основе ее производства лежат цепные реакции деления тяжелых ядер.
Ядерным горючим служат изотопы урана-235 и-238,_ Ри-239, Th-232, но для большинства АЭС используется только U-235,238, получаемые из урановой руды.
При распаде этих элементов выделяется значительная энергия и, что особенно важно, освобождаются два-три ней-' трона, обладающих кинетической энергией порядка нескольких МэВ; их называют "быстрыми", в отличие от "медленных" нейтронов (Е < 1 МэВ) и "тепловых" нейтронов (Е < 0,01 эВ). Ядерная реакция распада урана-235 выглядит следующим образом
Испускание при делении ядер-235,239 и £/-233 нескольких нейтронов делает возможным осуществление цепной реакции. Каждый из нейтронов, образовавшихся при одном акте деления, если он будет захвачен ядром, вызовет появление новых нейтронов, способных, в свою очередь, вызвать реакции деления и т.д. Таким образом будет происходить лавинообразное нарастание нейтронов деления и развивается цепочка делящихся ядер (цепная реакция). В действительности, эта картина не всегда имеет место: часть вторичных нейтронов попадает в ядра атомов тех веществ, которые присутствуют в объеме, где развивается реакция, но не являются делящимися, другая часть может просто выйти за пределы активной зоны — пространства, где идет реакция.
Условием, необходимым для возникновения цепной реакции, является размножение вторичных нейтронов. Коэффициентом размножения нейтронов называют отношение числа нейтронов в данном поколении к числу нейтронов в предыдущем поколении. Величина этого коэффициента определяется значением среднего числа нейтронов, образующихся при одном акте деления, вероятностями различных процессов взаимодействия нейтронов с ядрами делящегося вещества и примесей, а так же размерами системы, в которой происходит реакция.
Выше описанный процесс может иметь практическое значение, если удастся осуществить цепную реакцию и сделать ее управляемой, т.е. вызвать быстрое нарастание процесса, остановку нарастания и создание стационарного процесса, уровень которого может устанавливаться экспериментатором.
В этом плане наиболее приемлем изотоп-235, т.к. он делится как быстрыми, так и медленными нейтронами, причем вероятность деления после захвата нейтрона гораздо больше, чем у238, способного делиться только под действием быстрых нейтронов. В естественном уране, содержащем более 99% ядер-238 и всего 0,72% 235, цепная реакция самопроизвольно не возникает. Поэтому в ядерных реакторах (устройствах, в которых осуществляется цепные ядерные реакции), работающих на необогащенном, природном уране, главная роль отводится редкому изотопу235.
Первый ядерный реактор был построен в декабре 1942 года в США под руководством Э. Ферми. Первый европейский ядерный реактор создан в СССР в Москве под руководством М.В. Курчатова.
Некоторые из, так называемых, гетерогенных реакторов представляют систему графитовых блоков, в которые вставлены в определенном порядке урановые стержни. Между последними помещены управляющие стержни, содержащие кадмий. Уран является ядерным горючим; графит — замедлитель быстрых нейтронов; кадмий, хорошо поглощающий нейтроны, — поглотитель. Благодаря именно кадмию можно регулировать интенсивность процесса деления: для ослабления реакции управляющие стержни вдвигают в реактор, для ускорения — выдвигают из него. Область, где происходит реакция, окружена слоем бериллия, отражающего нейтроны, и бетонным слоем, поглощающим вредные для человека излучения.
На территории бывшего Советского Союза используются гетерогенные реакторы двух типов — ВВЭР и РБМК. Это реакторы" на тепловых нейтронах.
Аббревиатура ВВЭР расшифровывается как водо-водяной энергетический реактор. В данном случае это означает, что теп-' доносителем и замедлителем является вода.
РБМК — реактор большой мощности канальный (или кипящий). В реакторах этого типа замедлителем служит графит, а теплоносителем — вода.
Основные характеристики РБМК следующие. Активная зона реактора — вертикальный цилиндр эквивалентным диаметром 11,8 м, высотой 7 м. Боковой отражатель толщиной 1 м, торцо- _ вые отражатели — 0,5 м.
В качестве исходного топлива в реакторах РБМК используется обогащенный уран, т.е. содержание-235 составляет 2%.
Реактор РБМК использовался и на Чернобыльской АЭС.
Ядерный реактор заменяет топку котла. В остальном же АЭС содержит все элементы обычной электростанции. Ток газа, например гелия, передает тепло, освобождающееся в результате деления, в теплообменник. Там же образуется пар, направляющийся на турбину, к которой подключен генератор переменного тока.
АЭС имеет ряд преимуществ перед тепловыми электростанциями, работающими на угле или нефтепродуктах:
1. 10 грамм необогащенного урана заменяет 0,43 м3 нефти, что позволяет экономить природные энергоресурсы.
2. Поскольку самого процесса сжигания как такового не происходит, выхлопные газы отсутствуют и, следовательно, нет загрязнения окружающей среды двуокисью серы или углерода.
3. АЭС требует обслуживающего персонала в 2-3 раза меньше, чем тепловые электростанции.
Кроме электроэнергии указанный тип реакторов, использующий смесь изотопов урана -235 и -238, производит Ри-239 — радиоактивный элемент, практически не встречающийся в природе:
Плутоний альфа-активен, период полураспада — 24400 лет. Этот изотоп применяется, главным образом, в военной промышленности. Иначе его называют оружейный плутоний.
Одним из факторов облучения человека, особенно после аварий на атомных электростанциях, является техногенный радиационный фон атомной энергетики, который при нормальной работе ядерной установки невелик.
После аварии на Чернобыльской АЭС в экологическом аспекте возникло резко негативное отношение к перспективам развития ядерной энергетики, хотя и в процессе сжигания угля, с целью получения электроэнергии и отопления помещений, происходит радиоактивное загрязнение окружающей среды. Следует отметить, что в одном килограмме угля содержится около 70 Бк калия-40, 300 Бк тория и до 500 Бк урана. При сжигании радионуклиды концентрируются в золе. Из сказанного следует, что тепловые электростанции являются серьезным источником облучения населения на прилегающих к станциям территориях. Радиоактивные выбросы ТЭС в сопоставимых расстояниях формируют в десятки — сотни раз большую эффективную эквивалентную дозу, чем технологические выбросы нормально работающей атомной станции. Кроме того, в выбросах ТЭС опасны технические канцерогены, особенно бензопи-рен, сернистый газ, окислы азота, ртуть, свинец. Средние индивидуальные дозы облучения в районе расположения ТЭС в зависимости от мощности и степени очистки выбросов золы, по данным Холла, колеблются в пределах 6-60 мкЗв/год, тогда как выбросы АЭС в зависимости от типа реактора от 0,004 до 0,13 мкЗв/год, что значительно ниже (рис. 2.11).
По данным МАГАТЭ к 1993 г. в 29 странах мира действовало 424 энергоблока АЭС. Их мощность составляла около 20% суммарной мощности всех источников электроэнергии. По количеству действующих реакторов государства распределились следующим образом: США — 109 блоков, Франция — 56, Япония — 44, Великобритания — 37, Россия — 28, Германия и Канада — 21, Украина — 15, Швеция — 12 и еще 20 государств имеют от 1 до 9 блоков (рис. 2.12).
Как видно АЭС размещены в достаточно высокоразвитых странах. К особой группе можно отнести ряд стран центральной и восточной Европы. Это Болгария — 6 блоков, Венгрия — 4, Литва — 2, Словакия — 4, Словения — 1, Чехия — 4.
Ядерный топливный цикл включает в себя добычу урановой руды и извлечение из нее урана, переработку сырья в готовое ядерное топливо, транспортировку и химическую регенерацию отработанного топлива, очистку последнего от радиоактивных отходов и примесей, а затем захоронение отходов.
Отходы являются главным долгоживущим источником облучения населения, связанным с развитием ядерной энергетики.
Половину от общего количества урановой руды добывают открытым способом. Затем ее обогащают на фабрике, обычно расположенной неподалеку. Фабрики и создают проблему долговременного загрязнения, образуя огромное количество отходов, которые будут радиоактивны миллионы лет.
По оценкам различных авторов к 2000 году в мире накопится 200 тысяч тонн урана, в тоже время мощности по переработке отходов рассчитаны лишь на 50 тысяч тонн.
В результате переработки образуются газообразные и жидкие радиоактивные отходы, но они дают относительно небольшой вклад в дозы облучения по сравнению с другими этапами топливного цикла.
После обогащения ядерное топливо готово для сжигания. Величина радиоактивных выбросов при этом зависит от типа реактора и колеблется в широких пределах.
Выбросы могут существенно различаться при работе одного и того же реактора в различные годы в зависимости от текущих ремонтных работ, во время которых и происходит большая часть' выбросов.
Часть отработанного ядерного топлива направляется на переработку. В настоящее время это 10% использованного ядерного топлива.
Последний этап топливного ядерного цикла - захоронение высокоактивных отходов, которые представляют наибольшую опасность для экологии. Цикл захоронения требует огромных средств, нуждается в совершенстве технологии утилизации отходов.
В качестве ядерных отходов следует рассматривать и сами ядерные электростанции отслужившие свой срок. В настоящее время ряд блоков в Западной и Восточной Европе подходят к критическим срокам своего существования, поэтому этот вопрос сегодня также актуален, так как демонтировать АЭС сложнее, чем ее построить, и технология демонтажа еще не отработана.
Годовая коллективная эффективная доза облучения от всего ядерного цикла в 1980 году составила 500 чел.-Зв. Ожидается что к 2100 году она возрастет до 200000 чел.-Зв. Эта оценка основана на предположении, что нынешний уровень выбросов сохранится. Но даже и в этом случае, средние дозы будут малы по сравнению с дозами, получаемыми от внешних источников, в 2100 году они составят лишь 1% от естественного фона, хотя с учетом техногенных катастроф на атомных станциях и, в особенности, на Чернобыльской АЭС это соотношение существенно изменится.
На сегодняшний день в разрушенном 4-ом блоке Чернобыльской АЭС находится 50 т урана. Уран находится в застывшей лаве селикатного вещества при температуре 50-100°С, которая расплавила два железобетонных перекрытия. По оценкам специалистов 120 т урана находится между разрушенным 4 блоком и саркофагом. Около 40 т высокорадиоактивной смеси из уранового топлива, графита, бетона находится в шахте разрушенного реактора.
Сам саркофаг находится в аварийном состоянии и срок его > службы по предварительным оценкам — около 5 лет. Бетонное укрытие вокруг 4-го блока имеет трещины около 1000 м2. Верхнее бетонное перекрытие нарушено и в случае экстремальной ситуации 40 т радиоактивной пыли поднимается вверх.
В связи с этим необходимо проводить ежедневный радиационный мониторинг за состоянием окружающей среды, исследовать изотопный состав радионуклидов, динамику их перемещения и своевременно информировать население, чтобы не повторился второй Чернобыль.
В 1993 году состоялся международный конгресс по разработке нового укрытия и созданию экологически безопасной системы. Было представлено около 400 проектов из разных стран мира. В прошлом году состоялось обсуждение первого этапа проекта стоимостью около 300 млн. долларов, рассчитанного на 5 лет. Главным выводом этапа является подтверждение аварийного состояния саркофага. Следует отметить, что работающие 2-ой и 3-ий энергоблоки Чернобыльской АЭС не соответствуют международным нормам радиационной безопасности. В 1991 г. Верховный Совет Украины принял решение о закрытии Чернобыльской АЭС, однако в 1993 г. свое решение отменил. В 1994 г. 7 стран Европейского сообщества предложили Украине 200 млн. долларов для закрытия Чернобыльской АЭС.
По расчетам дирекции Чернобыльской АЭС Украина уже израсходовала 300 млн. долларов на повышение безопасности станции, а также добивается от мирового сообщества финансирования затрат на закрытие Чернобыльской АЭС и компенсации выработки электроэнергии за счет введения новых блоков на других станциях (стоимость около 4,5 млрд. долларов).
Сегодня можно однозначно заключить, что Чернобыльская катастрофа носит глобальный характер. Республика Беларусь нанесет невосполнимый ущерб и ее территория стала зоной экологического бедствия. Пока существуют атомные станции, атомное оружие, необходимо объединить усилия всех людей для выработки эффективных мер от ядерных аварий и преодоления последствий Чернобыльской катастрофы.
В зависимости от характера аварии на атомной электростанции, радиоактивные вещества, выброшенные в атмосферу в результате взрыва или нештатной ситуации, попадают в окружающую среду и переносятся воздушными потоками, в зависимости от погодных условий, на различные расстояния от эпицентра аварии. Вся среда обитания, флора, фауна, находящаяся в зоне взрыва, будет подвергаться облучению. Концентрация и качественный состав радионуклидов, находящихся в радиоактивном облаке, зависят от характера взрыва. Если выброс радиоактивных элементов произошел в результате взрыва активной зоны реактора, то радиоактивные вещества поднимаются достаточно высоко в атмосферу и возможно их перемещение с воздушными массами воздуха на большие расстояния. Важным фактором выброса является температура и состояние реактора в момент аварии. Если реактор в момент аварии находился не в рабочем состоянии, то выброс короткоживущих радионуклидов мало вероятен, и наоборот, авария в момент ядерной реакции сопровождается образованием и выбросом короткоживущих элементов. Наряду с выбросом газообразной фракции радионуклидов из активной зоны реактора Чернобыльской АЭС были выброшены осколки топлива, графит, элементы конструкции и другие материалы с более высокой температурой плавления. Радиоактивное облако, распространяющееся на большие расстояния от места аварии, осаждается на землю с дождевыми осадками, абсорбируется на взвешенных пылинках воздуха, изменяет свою концентрацию и состав. В начальный период аварии короткоживущие радионуклиды, переносящиеся воздушными потоками, являются основными дозообразующими факторами внешнего облучения. В дальнейшем основной вклад в интегральную дозу облучения вносят долгоживущие радионуклиды цезий-134 и -137, церий-134, стронций-90 и другие, которые осаждаясь на землю, растения, водоемы, здания и обладая большими периодами полураспада, являются источниками гамма-излучения. В таблице 2.4 представлен состав радионуклидов в воздухе у поверхности земли на 28 апреля 1986 года в Нурмиярви (Финляндия).
Концентрация радионуклидов в воздухе
Нуклид | Период полураспада Т 1/2 | Концентрация раионуклидов в воздухе мВк / м |
Цирконий-9 | 64,00 дня | 390 |
Ниобий-95 | 35,00 дней | 450 |
Молибден-99 | 2,75 дня | 2450 |
Кадмий-115 | 2,23 дня | 770 |
Олово-127 | 3,84 дня | 1200 |
Рутений-106 | 373,00 дня | 2400 |
Теллур-129 | 33,40 дня | 6600 |
Теллур-131 | 1,35 дня | 1120 |
Теллур-132 | 3,26 дня | 35000 |
Йод-131 | 8,04 дня | 205000 |
Йод-133 | 0,87 дня | 55000 |
Цезий-134 | 2,10 года | 6470 |
Цезий-136 | 13,10 дня | 2700 |
Цезий-137 | 30,20 года | 11200 |
Барий-140 | 12,80 дня | 5350 |
Церий-141 | 32,50 дня | 510 |
Церий-144 | 285,00 дней | 370 |
Нептуний-239 | 2,35 дня | 3270 |
В непосредственной близости к реактору (на расстоянии 100 км) концентрация вышеперечисленных радионуклидов была намного выше. В послеаварийные годы спектрометрические анализы приземного воздуха показали, что в атмосфере присутствуют в определенной концентрации радионуклиды цезия-137, цезия-134, берилия-7, стонция-90, церия-144, рубидия-106, актиния-228.
На рис.2.13, а, б представлен спектрометрический анализ проб на цезий-137 и Ве-7 за 1989-1993 гг. в г. Мозыре находящемся на расстоянии 90 км от Чернобыльской АЭС.
По оценкам различных авторов, увеличение гонадной дозы составляет около 10 мБэр в год. Эта дополнительная техническая доза также увеличивает риск получения пороков развития у детей, который составляет 1 случай на 8000. Во втором и третьем поколениях это состояние будет расти.
Из выше изложенного можно рассчитать количество наследственных пороков развития, которые возникают от Чернобыльской аварии. Расчет, предложенный Дж. Гофманом, учитывает многие факторы, в том числе, дозовые нагрузки от радиации. Считается, что 48% всей коллективной дозы население Земли получило за первое десятилетие после Чернобыльской катастрофы, 69% — в течении первых 30 лет и 75% — в течении 40 лет после аварии. Оставшиеся 25% будут получены в последующие годы.
Для популяции людей 42 млн. мужчин и женщин, каждый из которых получили среднюю дозу 1 рад, будет наблюдаться 21000 случаев пороков развития новорожденных с ростом в последующих поколениях. Общее количество случаев аномального развития от коллективной дозы 42 млн. человека-рад составит 210000 случаев.
В заключении следует отметить, что методика и расчеты Дж. Гофмана исходят из предельных оценок риска, что, на наш взгляд, оправдано для населения, пострадавшего от Чернобыльской катастрофы, так как здоровье людей, наследственность — важнейший фактор развития общества.
... жизни? Не создает ли человек вокруг себя дополнительные источники радиации при той или иной деятельности, не пользуемся ли мы этими источниками, подчас не ассоциируя их с действием атомной радиации? В современной жизни человек действительно создает ряд воздействующих на него источников, иногда очень слабых, а подчас и достаточно сильных. Рассмотрим хорошо известные рентгеновские диагностические ...
... , полученного только в 1977 году, составляет около 300000 чел-Зв. Раздел 2. Воздействие радиации на живой организм. 2.1 Механизм воздействия радиоактивных выбросов на организм человека. Рассмотрим механизм воздействия радиации на организм человека, пути воздействия различных радиоактивных веществ на организм, их распространение в организме, депонирование, воздействие на различные ...
... . Конечно, облучение в терапевтических дозах, как и всякое другое облучение, может вызвать заболевание раком в будущем или привести к неблагоприятным генетическим последствиям. Облучение в терапевтических дозах, однако, применяют обыкновенно для лечения рака, когда человек смертельно болен, а поскольку пациенты в среднем довольно пожилые люди, вероятность того, что они будут иметь детей, также ...
... любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи). Следует различать радиоактивность и радиацию. Источники радиации - радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) – могут существовать значительное время, а радиация существует лишь ...
0 комментариев