3. Корелляциаонно-регрессионный анализ

Исследование начинается с построения матрицы парных коэффициентов корреляции. Анализ этой матрицы позволит получить начальное представление об исследуемых взаимозависимостях между показателями (теснота и направление связи). Оценить значимость можно как по самим значениям коэффициентов корреляции, так и по соответствующим значениям t-статистики.

Чтобы оценить дублирование информации необходимо построить матрицу частных коэффициентов корреляции порядка (L-2), где L-число исходных переменных, включая результативный признак.

Исследование парных и частных коэффициентов корреляции должно помочь в выборе регрессоров для выполнения следующего этапа. Здесь следует учитывать возможность появления мультиколлинеарности. Явные признаки этого - коэффициенты корреляции между потенциальными регрессорами, по модулю большие, чем 0,8.

После составления набора объясняющих показателей, которые могут быть включены в модель, исследование продолжается с помощью регрессионного анализа. Рекомендуется использовать пошаговый регрессионный анализ по схеме последовательного включения в уравнение наиболее информативных объясняющих признаков. По матрице R по строке, соответствующей результативному признаку, выбирается наиболее коррелируемый с y-ом регрессор и строится МНК- уравнение на него. Проверяется его значимость.

Далее возвращаемся в корреляционный анализ и рассчитываем матрицу частных коэффициентов корреляции при фиксировании включенного в уравнение признака. И в этой матрице по строке, соответствующей результативному признаку, выбирается наиболее коррелированный показатель. Этот регрессор и вводится в модель. проверяется значимость уравнения и отдельных коэффициентов. Процесс прекращается, если введен незначимый регрессор.

При проведении интерпретации оценивается не только содержательный смысл модели, но и информативность, например, с помощью множественного коэффициента корреляции (детерминации) этого окончательного уравнения по сравнению с аналогичным, построенным по полному набору исходных объясняющих показателей. Потери информации ( (R2) могут быть достаточно большими и тогда целесообразно перейти к регрессии на главные компоненты и общие факторы.

методика факторного и компонентного анализов

Компонентный и факторный анализы проводятся с несколькими частными целями. Как методы снижения размерности они позволяют выявить закономерности, которые непосредственно не наблюдаются. Эта задача решается по матрице нагрузок, как и классификация признаков в пространстве главных компонент (или общих факторов). А индивидуальные значения используются для классификации объектов (не по исходным признакам, а по главным компонентам или общим факторам) и для построения уравнения регрессии на эти обобщенные показатели. Кроме того, диаграмма рассеяния объектов, построенная в плоскости, образованной двумя первыми, наиболее весомыми, главными компонентами (или общими факторами) может косвенно подтвердить или опровергнуть предположение о том, что исследуемые данные подчиняются многомерному нормальному закону. Форма облака должна напоминать эллипс, более густо объекты расположены в его центре и разреженно по мере удаления от него.

интерпретируются главные компоненты и общие факторы, которым соответствуют дисперсии больше 1, и которые имеют хотя бы одну весомую нагрузку. Выбор критической величины, при превышении которой элемент матрицы нагрузок признается весовым и оказывает влияние на интерпретацию главной компоненты или общего фактора, определяется по смыслу решаемой задачи и может варьировать в пределах от 0,5 до 0,9 в зависимости от получаемых промежуточных результатов. Формальные результаты должны хорошо интерпретироватьсЯ.

Факторный анализ - более мощный и сложный аппарат, чем метод главных компонент, поэтому он применяется в том случае, если результаты компонентного анализа не вполне устраивают. Но поскольку эти два метода решают одинаковые задачи, необходимо сравнить результаты компонентного и факторного анализов, т.е. матрицы нагрузок, а также уравнения регрессии на главные компоненты и общие факторы, прокомментировать сходство и различия результатов.

Далее необходимо объединить результаты, полученные в корреляционном, регрессионном анализе, методе главных компонент и факторном анализе и сформулировать общие выводы и рекомендации.

Заключение

Рассмотренная индексная методология анализа основных па­раметров товарного обращения позволяет получить достаточно обширную аналитическую информацию. Такая информация крайне необходима для организации планирования и управления товародвижением на всех иерархических уровнях торговли, рас­сматриваемой в виде большой и сложной динамической системы. Без этой информации нельзя также решать задачу по повыше­нию рентабельности торговли. Эффективность индексной мето­дологии анализа товарного обращения резко повышается в связи с использованием ЭВМ. В этом случае к индексной методологии легко подключаются другие аналитические методы.

Список использованной литературы

1.        Н. И. Щедрин "Статистика торговли" г. Москва "Финансы и статистика" 2003 год.

2.        И. К. Беляевский, Н. Н. Ряузов, Д. Н. Ряузов " Статистика торговли" г. Москва "Финансы и статистика" 2002 год.

3.        А. И. Харламов "Статистика советской торговли" г. Москва "Экономика" 2001 год.

4. Под редакцией профессора Р.А. Шмойловой "Теория статистики" г. Москва "Финансы и статистика" 2004 год.

 


Информация о работе «Статистика товарооборота розничной торговли»
Раздел: Маркетинг
Количество знаков с пробелами: 37711
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
53561
7
0

... учет запасов (раз в месяц, в 15 дней и т. п.). Однако и он обладает существенными недостатками т.к. отражает запас товаров выраженный в денежной массе, а не разбитой на отельные виды товары. 2. СТАТИСТИЧЕСКИЙ АНАЛИЗ РОЗНИЧНОГО ТОВАРООБОРОТА   Розничный товарооборот представляет собой послед­нюю, конечную стадию движения товаров в сфере обращения, когда товары из сферы обращения поступают в ...

Скачать
29441
3
0

... : . Следовательно, за счет роста производительности труда прирост розничного товарооборота всего лишь равен: ДПР = 54,76 – 48,28 = 6,48%. Столь незначительное влияние производительности труда на развитие оборота розничной торговли свидетельствуют, скорее всего, о недостаточной эффективности трудовой политики на данном предприятии. Очевидно, для корректировки ситуации в сфере труда желательно ...

Скачать
87980
6
14

... повседневного спроса и некоторых товаров предварительного выбора. Клиент завершает сделку, подходя к кассе и расплачиваясь за покупку. Именно на данном этапе работа супермаркета невозможна без отлаженной и эффективной системы автоматизации розничной торговли. Это обусловлено, как минимум, наличием системы штрихового кодирования, которая должна быть интегрирована в систему автоматизации розничной ...

Скачать
175257
31
7

... организации и общей суммы расходов на реализацию товаров, так как в обобщенном виде показатель эффективности отражает соотношение результата и затрат. 1.2 Внешние и внутренние факторы, влияющие на развитие товарооборота торговой организации На развитие розничного товарооборота оказывают влияние как внешние, так и внутренние факторы. Факторы, влияющие на развитие розничного товарооборота, ...

0 комментариев


Наверх