1.2.2 Абсорберы
В абсорберах происходит поглощение (абсорбция) компонента С из газовой смеси жидким поглотителем (абсорбентом). Процесс абсорбции может быть описан с помощью уравнений массообмена. Однако, поскольку в п. 1.1.2. была получена статистическая модель абсорберов и определены выходные параметры – Твых и степень поглощения y, в расчетах абсорберов 1 и 2 мы пользовались ею. Расчет абсорберов велся совместно с расчетом реакторов, что обусловлено причинами, приведенными выше. Результаты расчета абсорберов приведены в таблице 4.
Таблица 4. Результаты расчета абсорберов.
Параметр | Абсорбер 1 | Абсорбер 2 |
Vабс, м³ | 25 | 26 |
Плотность орошения, м³/м² | 18 | 18 |
Твх, °C | 180 | 175 |
Объемный расход смеси на входе в абсорбер, м³/ч | 114600 | 106700 |
Концентрации компонентов на входе в абсорбер, об.доли А В С | 0,00373 0,051 0,077 | 0,0001597 0,053 0,014 |
Твых, °C | 51,6 | 49,2 |
Степень абсорбции y | 0,8757 | 0,9002 |
Концентрации компонентов на выходе из абсорбера, об. доли А В С | 0,004 0,055 0,01 | 0,0001617 0,054 0,001415 |
Количество отделенного компонента С, кмоль/ч | 344,97 | 60,014 |
Как видно из таблицы 4, абсорбер 1 работает достаточно хорошо, а для абсорбера 2 характерна низкая производительность. Отчасти это объясняется причинами, указанными в п. 1.2.2.
1.3 Синтез оптимальной тепловой системы с помощью
эвристического метода
Задача синтеза систем теплообмена формулируется следующим образом. Пусть имеется m горячих и n холодных потоков, которые мы будем называть основными технологическими потоками. для каждого из этих потоков заданы начальные температуры , конечные температуры и значения водяных эквивалентов . Под водяным эквивалентом будем понимать произведение теплового расхода на удельную теплоемкость. Необходимо определить структуру технологических связей между теплообменными аппаратами заданного типа, а также площади поверхности теплообмена каждого аппарата, которые обеспечивали бы заданные начальные и конечные температуры основных технологических потоков при минимальном возможном значении приведенных технологических затрат Зпр, связанных с эксплуатацией синтезированной тепловой системы.
Синтезируемую тепловую систему можно разделить на две подсистемы: внутреннюю (рекуперативную), где в теплообмене участвуют только основные технологические потоки, и внешнюю, где при теплообмене используются вспомогательные технологические потоки. При этом внешняя подсистема используется только тогда, когда во внутренней подсистеме не удается получить заданные конечные температуры.
Приведенные технологические затраты, связанные с эксплуатацией синтезируемой тепловой системы, могут быть выражены следующим образом:
, (21)
где З1 – затраты на рекуперативные теплообменники, ус.д.ед.;
З2 – затраты на вспомогательные теплообменники, ус.д.ед.;
З3 – затраты на вспомогательные теплоносители, ус.д.ед.;
Ен – нормативный коэффициент эффективности.
Если во внутренней подсистеме используется k1 теплообменных аппаратов, а во внешней l1 , то
, (22)
где Ц – стоимость теплообменника.
При расчете i-го теплообменника любой подсистемы используется формула:
, (23)
где Fi – площадь поверхности теплообмена i-го теплообменника, м²;
a – стоимостной коэффициент, зависящий от типа теплообменника.
Затраты на вспомогательные теплоносители определяются по формуле:
, (24)
где θ – продолжительность годовой эксплуатации системы, ч/год;
Цp – стоимость p-го вспомогательного теплоносителя в p-м вспомогательном теплообменнике, ус.д.ед./кг;
Gpl – расход p-го вспомогательного теплоносителя в l-м вспомогательном теплообменнике, кг/ч;
p1,l1- число вспомогательных теплоносителей и теплообменников соответственно.
При синтезе тепловой системы используются следующие формулы:
, (25)
где Q – тепловая нагрузка теплообменника, Вт;
K – коэффициент теплопередачи, Вт/(м²*К);
Δtср – средняя разность температур, К.
Тепловая нагрузка теплообменника или количество тепла, переданное в одном аппарате, определяется на основе концепции передачи максимально возможного количества тепла при минимально допустимой разности температур на концах теплообменника:
если , то теплообмен невозможен;
если , то ;
если , то .
, (26а)
, (26б)
, (26в)
, (27а)
. (27б)
Задача синтеза тепловой системы решается путем формирования множества возможных комбинаций исходных горячих потоков и холодных потоков для проведения физически реализуемых операций теплообмена в теплообменном аппарате. Для этой цели строят таблицу пар взаимодействующих потоков, исходя из условия Q→max. Из таблицы пар выбирается пара потоков, вступающих во взаимный теплообмен. Если в результате теплообмена данные потоки достигли заданных конечных температур, то они исключаются из рассмотрения. Иначе, начальным температурам этих потоков присваиваются значения конечных температур результирующих потоков, после чего таблица пар перестраивается, и выбирается новая пара потоков. Данная операция производится до тех пор, пока не останется потоков, способных вступать во взаимный теплообмен, или все потоки достигнут требуемых конечных температур.
При необходимости для достижения заданных конечных температур в теплообменных системах используются вспомогательные тепло- и хладагенты.
Таким образом, задача синтеза является многоэтапной задачей, в которой на каждом этапе осуществляется выбор пары потоков, вступающих во взаимный теплообмен. Пары потоков можно выбирать с помощью эвристических правил (эвристик). Под эвристиками понимают правила, полученные на основе анализа опыта квалифицированных специалистов, которые носят характер вероятных, хотя и не всегда безошибочных утверждений.
В данной работе использовались следующие эвристики:
... -газ смешивается с циркуляционным газом, который поджимается до рабочего давления в компрессоре 2. Газовая смесь проходит через адсорбер. Высшие спирты Рис. 1. Технологическая схема производства метанола при низком давлении: 1 — турбокомпрессор, 2 — циркуляционный компрессор, 3, 7 —холодильники, 4 — сепаратор, 5 — адсорбер, 6 — реактор адиабатического ...
... реакции относятся к самопроизвольным процессам. Со временем катализатор изменяется и после определенного срока может полностью необратимо потерять свою активность. Прогрессивные химико-технологические процессы Радиационно-химическую технология. За последние два десятилетия сформировалась новая область химической технологии - радиационно-химическая технология (РХТ). Ее предшественницей ...
... 2 на рис. 3.2). После некоторой операции поток разветвляется и далее отдельные потоки перерабатываются различными способами. Используется для получения разных продуктов. Связи в химико-технологической системе: 1 – последовательная; 2 – разветвленная; 3 – параллельная; 4, 5 – обводная (байпас) простая (4) и сложная (5) 6 обратная (рециркуляционная) – рецикл полный (6, 9) и фракционный (7, А), ...
... затрат в рециркуляционных реакционно-ректификационных процессах с различной организацией подачи рецикла для реакции изомеризации типа АВ. Глава 2. Расчетно-аналитическая часть 2.1. Анализ стационарных состояний рециркуляционного реакционно-ректификационного процесса. В рециркуляционных схемах существуют различные варианты подачи рецикла. В данном случае рассматривается схема, ...
0 комментариев