3.6. Газовая хроматография

В газовой хроматографии (ГХ) в качестве ПФ используют инертный газ (азот, гелий, водород), называемый газом-носителем. Пробу подают в виде паров, неподвижной фазой служит или твердое вещество - сорбент (газо-адсорбционная хроматография) или высококипящая жидкость, нанесенная тонким слоем на твердый носитель (газожидкостная хроматография). Рас­смотрим вариант газожидкостной хроматографии (ГЖХ). В качестве носи­теля используют кизельгур (диатомит) - разновидность гидратированного силикагеля, часто его обрабатывают реагентами, которые переводят груп­пы Si-OH в группы Si-О-Si(CH3)3, что повышает инертность носителя по отношению к растворителям. Таковыми являются, например, носители “хромосорб W” и “газохромQ”. Кроме того, используют стеклянные мик­рошарики, тефлон и другие материалы.

Неподвижную жидкую фазу наносят на твердый носитель. Эффектив­ность разделения в газожидкостной хроматографии зависит главным обра­зом от правильности выбора жидкой фазы. При этом полезным оказалось старое правило: “подобное растворяется в подобном”. В соответствии с этим правилом для разделения смеси двух веществ выбирают жидкую фа­зу, близкую по химической природе одному из компонентов. Подготов­ленный носитель помещают в спиральные колонки, имеющие диаметр 2 - 6 мм и длину до 20 м (набивные колонки). С 1957 года стали применять предложенные Голеем капиллярные колонки, имеющие диаметр 0,2 - 0,3 мм и длину в несколько десятков метров. В случае капиллярных колонок жидкая фаза наносится непосредственно на стенку этого капилляра, кото­рая выполняет роль носителя. Применение капиллярных колонок способ­ствует повышению чувствительности и эффективности разделения много­компонентных смесей.

Рис.3.6.1. Блок-схема газового хроматографа.

Анализ методом ГХ выполняют на газовом хроматографе, принципи­альная схема которого приведена на рис. 3.6.1.

Газ - носитель из баллона 1 с постоянной скоростью пропускают через хроматографическую систему. Пробу вводят микрошприцем в дозатор 2, который нагрет до температуры, необходимой для полного испарения хроматографируемого вещества. Пары анализируемой смеси захватывают­ся потоком газа - носителя и поступают в хроматографическую колонку, температура которой поддерживается на требуемом для проведения анали­за уровне (она может быть неизменной, или по необходимости меняться в заданном режиме). В колонке анализируемая смесь делится на компоненты, которые поочередно поступают в детектор. Сигнал детектора фиксируется регистратором (в виде пиков) и обрабатывается вычислительным интегратором.

В ГХ используют детекторы, которые преобразуют в электрический сигнал изменения физических или физико-химических свойств газового потока, выходящего из колонки, по сравнению с чистым газом - носителем. Существует множество детекторов, однако широкое применение находят только те из них, которые обладают высокой чувствительностью и универ­сальностью. К таким относятся: катарометр (детектор по теплопроводно­сти); пламенно-ионизационный детектор (ПИД), в котором водородное пламя служит источником ионизации органического соединения; детектор электронного захвата (ЭЗД); термоионный детектор (ТИД), который обла­дает высокой селективностью к органическим веществам, содержащим фосфор, азот и серу. Интерес к этому детектору заметно возрос в связи с заменой хлорсодержащих пестицидов на фосфорсодержащие ядохимика­ты, используемые в сельском хозяйстве и попадающие затем в пищевые продукты.

Катарометр позволяет определить концентрации веществ в пределах 0,1 - 0,01%, ПИД - 10-3 - 10-5%”; ЭЗД - 10-6 - 10-10%. Современные детекторы позволяют определять даже пикограммы (10-12 г) вещества в пробе.

Качественный и количественный анализ в методе ГХ проводят так же, как и в ВЖХ.

Газожидкостная хроматография находит широкое применение для раз­деления, идентификации и количественного определения сложных много­компонентных систем, таких как нефть, биологические жидкости, пище­вые продукты, парфюмерно-косметические изделия и многие другие. Ме­тод отличается высокой чувствительностью, экспрессностью; для анализа не требуется большого количества исследуемого образца.

Среди разнообразных хроматографических методов газовая и высоко­эффективная жидкостная хроматография являются самыми перспективны­ми для решения сложных задач в практике пищевого анализа.

Так, в число задач, которые могут быть разрешены в пищевом анализе с помощью этих методов, входят:

- определение химической природы веществ, обуславливающих характерный аромат свежих продуктов;

- контроль за состоянием продуктов в процессе обработки и хранения;

- объективная оценка показателей, характеризующих качество исходного сырья и готовых изделий из него;

- установление и устранение причин, вызывающих нежелательные изменения продуктов в процессе их изготовления;

-        установление факта фальсификации продукта и другие.

Рис.3.6.2. Хроматограмма афлотоксинов в молоке. Регистрация с помощью флуометрического детектора (возбуждающая длина волны 365 нм, возбужденная 455 нм).

Методами ГХ и ВЖХ идентифицируют и определяют летучие вещества, участвующие в формировании вкуса и аромата многих пищевых продуктов или отвечаю­щих за их порчу. Например, определяют летучие жирные кислоты, характерные для качест­венного мяса; или кислоты, образующиеся при изменении нормального процесса брожения квашеной капусты и обуславливающие посторонние оттенки ее запаха. Методы используются для определения никотина, нитрозамина (в рыбе и копченостях); пищевых добавок (красители, консер­ванты, антиокислители); загрязнителей окружающей среды (пестициды, афлатоксины, остатки лекарственных препаратов, витамины) и др. На рис. 3.6.2 представлена хроматограмма разделения афлатоксинов в молоке.

Весьма ценными являются методы ГХ и ВЖХ в установлении фактов фальсификации потребительских товаров. Так, желтый краситель в мака­ронных изделиях может создать впечатление о высокой стоимости продук­та. Наличие такого красителя можно подтвердить методом ВЖХ. Опреде­ление антоцианов и гликозидов, отвечающих за цвет вина, позволяет вы­явить натуральность вина. Подделки коньяка также можно распознать с помощью ГХ.

Методом ВЖХ идентифицируют и определяют небелковый азот, на­пример, мочевину, которую добавляют при фальсификации белковых про­дуктов с целью увеличения азотистых веществ. Обнаружение аминокисло­ты оксипролина, присутствующей, главным образом, в белках соедини­тельной ткани, т.е. в дешевом сырье, позволяет выявить факт замены им полноценного белка мяса. Жиры, определяемые по триглицеридному со­ставу методом ГХ, могут дать информацию о количестве жира и добавках постороннего жира. По определению жирно-кислотного состава можно сделать вывод о замене какао-масла гидрожиром в шоколаде и т.п.

Следует отметить, что в настоящее время некоторые виды хроматографии используют не как самостоятельные методы анализа, а как методы предварительного исследования или как методы подготовки пробы к по­следующему определению другими методами, в том числе хроматографическими.

Так, при определении аминокислот в гидролизате белков мяса или кро­ви методом БХ, проводят предварительную очистку гидролизата на колонках с ионитами. Аналогично поступают при определении летучих основа­ний и свободных жирных кислот в мясе и рыбе.

Методом ТСХ устанавливают наличие в исследуемом образце хлорорганических пестицидов, количественное определение которых затем про­водят методом ГЖХ.

Рис. 3.6.3. Сочетание газовой хроматографии с другими принципами анализа и включенной последовательно ЭВМ.

Особенно эффективным оказалось применение независимой аналитической идентификации и определения продуктов хроматографического разделения при сочетании ГХ и ВЖХ с другими методами исследования: инфракрасной спектроскопией и масс-спектрометрией. Методом масс-спектрометрии можно проводить непрерывный анализ компонентов смеси, причем для небольших количеств веществ. Такой комбинированный (гибридный) метод получил название хромато-масс-спектрометрии. Например, определение пестицидов, остатков лекарственных веществ (пенициллинов, сульфаниламидов и др.) проводят, используя комплекс: ГХ (или ВЖХ) - масс-спектрометрия. Возможно сочетание хроматографии с методами ядерного магнитного резонанса, пламенной (фотометрии, абсорбционной спектрометрии и др.).

На рис.3.6.3 представлена примерная схема сочетания газовой хромато­графии с другими методами анализа и ЭВМ.

Заключение

 

Применение хроматографии наряду с другими физико-химическими методами, а также их взаимное сочетание, является тенденцией в разра­ботке методик исследования качества потребительских товаров.

Рис. 3.6.4. Хроматограмма градуировочной смеси, полученная на хроматографе, оснащенном капиллярной колонкой HP-FFAP (США)

1 уксусный альдегид, 2 метиловый спирт уксусной кислоты, 3 этиловый эфир уксусной кислоты, 4 метиловый спирт, 5 этиловый спирт, 6 пропанол-1, 7 изобутиловый спирт, 8 – 6 бутанол-1, 9 изоамиловый спирт.

Происходит пересмотр государственных стандартов. Так, в 1997-1998 г.г. введены новые стандарты по исследованию качества воды питьевой (ГОСТ Р51209-98), на содержание хлорорганических пестицидов и этило­вого спирта и водки (ГОСТ 30536-97), регламентирующие определение содержаний токсичных микропримесей методами газожидкостной хроматографии. На рис. 3.6.4 представлена хроматограмма токсичных микропримесей водки и этилового спирта, из которой видно, что методом ГЖХ с использованием капиллярной колонки возможно раздельное определение всех компонентов (в отличие от методик предшествующего ГОСТ).

Методы хроматографии обладают большой аналитической емкостью, и, как уже было отмечено выше, находят самое широкое применение.

Литература:


1.   Дорохова Е.Н., Прохорова Г.В. Аналитическая химия. Физико-химические методы анализа. - М.: Высшая школа, 1991.-256 с.

2.   Курко В.И. Хроматографический анализ пищевых продуктов. - М.: Пищевая промышленность, 1965. - 274 с.

3.   Лебухов В.И., Окара А.И., Павлюченкова Л.П. Физико-химические свойства и методы контроля качества потребительских товаров. - Хабаровск, 1999. -251 с.

4.   Ротаунт М. Анализ пищевых продуктов / пер. с нем. Б.П.Лапина – 1994. -476 с.

5.   Рапопорт В.Л., Золотухина Г.Ф. Применение газожидкостной хроматографии для анализа коньяков и коньячного спирта // Формирование и развитие регионального рынка потребительских товаров и услуг. – Хабаровск.: 1998. –с. 168 –169.


Информация о работе «Хроматографический анализ»
Раздел: Химия
Количество знаков с пробелами: 52425
Количество таблиц: 1
Количество изображений: 9

Похожие работы

Скачать
18559
0
1

... найти эту точку, продифференцируем данное уравнение и приравняем производную к нулю: , откуда  = 2, а подставив  в исходное уравнение, получим +2. Таким образом, кинетическая теория дает основу для оптимизации хроматографического процесса. Виды хроматографии Рассмотрим особенности наиболее широко применяемых видов хроматографии. Газовая хроматография - это метод, ПФ в которой является ...

Скачать
29850
0
0

... эфиров, получаемых путем реакции с бис-триметилсилилацетамидом, бис-триметилсилилтрифторацетамидом или с другими подобными реагентами.   Азотосодержащие соединения Детальное рассмотрение методов хроматографического анализа азотсодержащих соединений, главным образом содержащих аминные группы, дано в монографии. При анализе азотсодержащих соединений следует обращать особое внимание на ...

Скачать
3811
2
2

... как результаты аппроксимации будут неудовлетворительными. Об этом свидетельствуют различные параметры на вышеупомянутых графиках, тогда как они должны быть одинаковыми, поскольку форма моделируемых хроматографических пиков одинакова. Различные же параметры говорят о том, что аппроксимация проводилась в разных диапазонах Cf/C. Прочитав этот материал, проницательный читатель сразу скажет: "А как ...

Скачать
60151
0
26

... . Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификации веществ, которые не могут быть опознаны с помощью какого- либо одного метода.[11-12] Глава 3. Примеры применения хроматографии в анализе объектов окружающей среды   Анализ состояния водной среды с помощью метода газовой хроматографии[13-15] Метод газовой хроматографии для анализа ...

0 комментариев


Наверх