1.2 Типы химических реакций

В химической кинетике рассматривается несколько типов химических реакций.

Необратимыми (односторонними) называют реакции, ко­торые идут только в одном направлении. В таких реакциях про­дукты представляют осадок, газы или мало диссоциируемые хими­ческие соединения.

Двусторонними (обратимыми) реакциями называются ре­акции, которые протекают одновременно в противоположных на­правлениях.

Параллельными называют реакции, идущие одновременно по нескольким направлениям (стадиям) с образованием различных продуктов.

Скорость процесса из параллельных стадий определяется самой быстрой стадией.

Последовательные реакции состоят из нескольких стадий, следующих друг за другом. Скорость процесса из последователь­ных стадий определяется самой медленной.

Цепные реакции - это самоподдерживающиеся химические реакции, при которых первоначально появляющиеся продукты принимают участие в образовании новых продуктов. Цепные ре­акции проходят три главные стадии: зарождения (инициирования), развития и обрыва цепи.

Фотохимические реакции связаны с воздействием света на вещество (например, фотосинтез). Отношение числа молекул про­дукта к числу квантов света, инициирующих реакцию, называется квантовым выходом.

1.3 Влияние температуры на скорость химической реакции

Скорости большинства реакций с повышением температу­ры увеличиваются. Существует приближенное правило Вант-Гоффа: при повышении температуры на каждые 10° скорость ре­акции увеличивается в 2-4 раза. В соответствии с этим правилом повышение температуры на 100 К приводит к повышению скоро­сти реакции примерно в З10 ≈ 60 тысяч раз. Большинство простых реакций подчиняются этому правилу, но имеются исключения. Например, для гидролиза метилацетата константа скорости при 308 К в 1,82 раза больше константы скорости при 298 К, а для гидролиза сахарозы при том же увеличении температуры скорость возрастает в 4,13 раза.

Температурная зависимость константы скорости выража­ется уравнением Аррениуса:

К = Ко exp(-Ea/RT) = Ко e –Еа / RT, (5)

где К - предэкспоненциальный множитель, который не зависит или почти не зависит от температуры;

Еа - энергия активации - это минимальная энергия (в расчете на 1 моль или 1 кмолъ), которой должны обладать реагирующие (исходные) частицы, чтобы столкновение между ними привело к ре­акции.

До последнего времени энергию активации рассматривали в теории химической кинетики как эмпирическую постоянную. Но в настоящее время появилась возможность ее приближенной оцен­ки с помощью квантовой химии.

За величину энергии активации приближенно принимают превышение средней энергии активированного комплекса над средним уровнем энергии исходных веществ. Она зависит от природы реаги­рующих (исходных) веществ и характеризует изменение скорости реакции от температуры. Чем больше энергия активации,тем бы­стрее увеличивается с ростом температуры скорость реакции.

Если уравнение (5) прологарифмировать, то получим:

1пК = 1пК0 - Еа /RT. (6)

В системе координат 1пК - 1/Т соотношение (6) - прямая линия. Это так называемый аррениусовский график, и считается, что реакции, дающие в этих координатах прямую линию, прояв­ляют аррениусовское поведение.

Уравнение Аррениуса достаточно хорошо выполняется для простых гомогенных и многих гетерогенных реакций. Откло­нение от этого закона указывает на сложный характер протекаю­щей реакции. Форма аррениусовского выражения может быть получена из следующих рассуждений.

Предположим, что константа скорости реакции второго порядка является результатом бимолекулярной реакции. Для ее протекания необходимы два условия.

Прежде всего молекулы должны встретиться друг с другом, т.е. должно произойти их соударение. Обозначим через Z ско­рость, с которой происходят эти соударения в единице объема в газовой фазе. В газе при атмосферном давлении частота столкно­вений равна приблизительно 1028 1/с см3 даже при комнатной температуре. Если бы наличие столкновений было бы единствен­ным фактором, необходимым для протекания реакции, то все га­зовые реакции заканчивались бы за 10 -9 с (происходил бы взрыв), но это не так. Более того, частота столкновений зависит от квад­ратного корня из температуры. Следовательно, если учитывать только число столкновений молекул, то получается абсурдно большая скорость реакции и абсурдно невероятная ее зависимость от температуры.

Другим необходимым условием для осуществления реак­ции является то, что молекулы при столкновении должны обла­дать достаточной энергией. Слабое столкновение не ведет к реак­ции, столкновение должно быть сильным. Если предположить, что для осуществления реакции столкнувшиеся молекулы должны иметь, по крайней мере, энергию Еа, то частота столкновений должна быть умножена на долю молекул, сталкивающихся с энер­гией Еа. Эта доля определяется уравнением Больцмана и равна exp(-Ea/RT) для данной системы при температуре Т. Из этого сле­дует, что температурная зависимость скорости реакции может быть выражена уравнением:

 W = Z*exp(-Ea/RT), (7)

где Z - число соударений.

При обычных температурах доля энергетически достаточ­ных столкновений очень мала, поэтому приведенное выражение предсказывает скорость, которая значительно меньше, чем вели­чина Z. Более того, оно предсказывает экспоненциальную темпе­ратурную зависимость скорости реакции, поскольку доля энерге­тически достаточных столкновений экспоненциально увеличива­ется с температурой.

Таким образом, уравнение (7) качественно схоже с уравне­нием Аррениуса, но дает меньшее значение скорости химической реакции. Связано это с тем, что в реакции могут участвовать частицы с энергией, не только равной Еа, но и с большей энергией. Фактически экспериментальная температурная зависимость ско­рости реакции значительно сильнее, чем зависимость Z от корня квадратного из температуры.

Например, для типичных энергий активации (около 50-100 кДж/моль) скорость удваивается при повышении темпера­туры на 10° , но частота столкновений изменяется только в (308/298)1/2 = 1,02 раза при этом же повышении температуры. С ростом температуры влияние этого фактора уменьшается.

Опытные данные показывают, что энергия активации, как правило, значительно меньше энергии разрывающихся при дан­ной реакции химических связей, т.е. энергии диссоциации реаги­рующих молекул. Это можно объяснить тем, что затрата энергии на разрушение старых связей сопровождается выделением энергии при образовании новых химических связей в продуктах реакции, т.е. происходит частичная компенсация энергетических затрат. Для количественной оценки этого явления российским ученым Г.К. Боресковым была предложена величина % названная степе­нью компенсации:

χ = (ЕД -Еа)/Ед, (8)

где Ед - энергия диссоциации реагирующих молекул;

Еа - энергия активации реакции.

При полном разрыве связей, без компенсации образования новых связей, энергия активации совпадает с Е д и χ =0. Уменьше­ние энергии активации соответствует все большей компенсации и при Еа =0 величина χ =1 компенсация полная. Для некаталитиче­ских реакций со стабильными молекулами степень компенсации обычно не превышает 70%.


Информация о работе «Энергия активации»
Раздел: Химия
Количество знаков с пробелами: 21350
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
33968
0
3

... основные закономерностей активации LiAl, LixC6 и С8С3 электродов путем механических, физико-химических и электрохимических воздействий, а также изучние обратимой работа модифицированных электродов, работающих по "принципу электрохимического внедрения, в макетах литиевых аккумуляторов. Задачи исследования. Для достижения поставленной цели потребовалось: -провести комплексное систематическое ...

Скачать
15429
0
15

... можно судить с тех же позиций, которые применяются в координационной химии для связи металл-лиганд, для характеристики изменений свойств лиганда (т.е. его активации). Основные понятия координационной химии   В основе современных представлении о природе комплексов лежит координационная теория Вернера (1893 г.). Основные положения теории А. Вернер вывел, рассматривая соединения, которые либо ...

Скачать
191966
8
41

... или кислот; так получают, например, золь гидроксида железа(III), имеющий следующее строение: {[Fe(OH)3]m n FeO+ · (n–x)Cl–}x+ x Cl– 4.2.2 Агрегативная устойчивость лиофобных коллоидов. Строение коллоидной мицеллы Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения ...

Скачать
89044
1
4

... : ,(2.8) где фотопроводимость; — константа для данного образца;  — термическая энергия активации проводимости (обычно 0,1—0,3 эв). Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников. Зависимость фототока от освещенности выражается ...

0 комментариев


Наверх