Модели задачи пространственного вращения

Рассмотрим две различные физически возможные ситуации, связанные с вращением вокруг некоей фиксированной точки – центра. В данном разделе мы, не стремясь к излишней строгости изложения, ограничимся физическими аналогиями и подходом к анализу криволинейного движения, заимствованным из классической теоретической механики.

1. В первом случае представим себе вращательное движение двухатомной молекулы вокруг её центра масс. Пренебрегая относительно небольшими колебательными деформациями химической связи, можно считать постоянным межъядерное расстояние R, а соответственно, и радиусы сфер, по которым перемещается каждый из атомов вращающейся молекулы с массами  и . Такая модель называется жёстким ротатором и может рассматриваться как пример чистого вращения (рис. 1)

Рис. 1. Жесткий ротатор.

Ему отвечает кинетическая энергия

 (1)

где L– момент импульса, I – момент инерции, а  – приведенная масса,

В свободном вращательном движении потенциальная энергия отсутствует, и оператор кинетической энергии представляет собой одновременно оператор полной энергии. Он запишется так:

 где R=const (2)

Напомним читателю, что выражение оператора момента импульса I дано в разделе 2.2. Следует ожидать, что в сферических координатах оператор вр должен зависеть только от угловых переменных, но не от радиуса . Это легко проверить с помощью анализа размерности.

2. Второй случай сложнее и полнее. Он имеет место при движении одного электрона в поле ядра атома водорода, водородоподобном ионе или при взаимном вращении частиц в электрон-позитронной системе, известной как атом позитрония. Такое движение называется центральным, а сама задача Кеплеровой.

Электрон невозможно зафиксировать на сфере постоянного радиуса – это запрещено принципом неопределенности. При движении электрона как бы образуется пространственное облако. Тем не менее, можно обратиться к аналогии с классической механикой, которая позволяет в любом криволинейном движении выделить нормальную (радиальную) и тангенциальную (касательную) компоненты. Тангенциальная составляющая кинетической энергии соответствует чистому вращению – перемещению по сфере – и связана с моментом импульса формулой (1).

Движение электрона, порождающее облако с вероятностным распределением плотности, можно условно представить как совокупность чистых вращений на концентрических сферах с фиксированными радиусами и радиальных перемещений между этими сферами. В таком случае чисто вращательное слагаемое в составе оператора кинетической энергии также описывается формулой (2) но при этом момент инерции является переменной величиной из-за меняющегося радиуса

 (3)

где  – масса электрона, а .

Присутствие радиального слагаемого  в этом случае заставляет представить оператор кинетической энергии  в виде суммы

 (4)

3. В силу того, что оператор кинетической энергии частицы отличается от лапласиана только множителем (см. уравнение 2.15), домножив на него формулу (4.46), получим

(5)

Сравнивая формулы (4.50) и (4.51), приходим к фундаментальному соотношению

, (6)

т.е. оператор квадрата момента импульса совпадает с оператором Лежандра  с точностью до постоянного множителя . Заметим, что размерность собственных значений оператора  совпадает с размерностью постоянной Планка .

4. Этот же результат можно получить и последовательными математическими преобразованиями компонент операторов  и . Процедура перехода к сферическим координатам для компонент  аналогична той, что была осуществлена в разделе. при переводе  к плоской полярной системе координат. Кстати говоря, в сферических координатах  имеет тот же самый вид. Используя уравнения и читатель сам легко получит выражения

(7)

 (8)

(9)

Суммируя результаты возведения в квадрат найденных выражений для операторов проекций момента импульса, получаем формулу (6), которая в развернутой форме с учетом имеет вид

(10)


Информация о работе «Модели задачи пространственного вращения»
Раздел: Химия
Количество знаков с пробелами: 7539
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
69425
2
0

... В: (2.3) Теперь будет сформулирована простая задача спектральной оценки. Особое внимание будет уделено моделированию свойств процесса сбора данных, которые являются общими для многих задач обработки решеток. Эти свойства включают измерение корреляционной функции при конечном числе неравномерно распределенных точек и ограничения на область пространства частоты-воктора волны, в ...

Скачать
17942
0
0

... 1 – 4 (или части этих преобразований). Таким образом, справедливо следующее важное свойство аффинных преобразований плоскости: любое отображение вида (2.1) можно описать при помощи отображений, задаваемых формулами (2.3) – (2.11). Для эффективного использования этих известных формул в задачах компьютерной графики более удобной является их матричная запись. Матрицы, соответствующие случаям 1 – 3, ...

Скачать
17076
0
17

Бреславец, В.Н. Гамаюнов). Объектом исследования в данной исследовательской работе являются фигуры вращения правильных многогранников. Предмет исследования – объем тел вращения. Работая над темой, мне удалось собрать удивительно интересный материал о правильных многогранниках. Оказалось, что даже тайна мироздания связана с этими пятью правильными многогранниками. В процессе исследования были ...

Скачать
145753
0
2

... недостаточная ориентировка в частях собственного тела и недостаточность у них тонкой моторики. Глава II. Занятия конструированием в дошкольных образовательных учреждениях как фактор развития пространственных представлений старших дошкольников с задержкой психического развития   2.1 Обследование Данный анализ проводился на основе экспериментального изучения детей с ЗПР старшего дошкольного ...

0 комментариев


Наверх