2. ФЛОКУЛЯЦИЯ

Флокулы, образовавшиеся в результате агломерации нескольких коллоидных частиц, не могут иметь размеры, достаточные для их осаждения или обезвоживания в течение заданного периода времени. Флокулянт способствует соединению частиц флокул, образуя мостиковые связи между поверхностями частиц и связывая отдельные частицы в большие агломераты.

В качестве флокулянтов обычно применяются квасцы, соли железа и полимеры с высоким молекулярным весом. Процесс флокуляции ускоряется при медленном перемешивании, когда соединение флокул происходит постепенно; при слишком высокой скорости перемешивания флокулы отделяются друг от друга и при повторном соединении редко достигают оптимального размера и прочности. В процессе флокуляции не только увеличивается размер частиц флокул, но и изменяются их физические свойства. Ил и шлам при флокуляции обезвоживаются на песчаных площадках и в механическом оборудовании для обезвоживания гораздо быстрее, так как флокулы имеют менее студенистую структуру.

Очевидно, что процессы (а) нейтрализации зарядов, или коагуляции, и (b) образования флокул, или флокуляции, настолько различны, что каждая из этих систем, где проводится удаление твердых веществ после химической обработки, имеет свои ограничения по физическим параметрам.

Эти ограничения представлены в Таблице

Различающиеся условия Коагуляция Флокуляция
Характер частиц Многочисленные Разрозненные мелкие частицы крупные частицы
Тип используемого химического вещества Нейтрализатор заряда, с низким молекулярным весом Объединитель частиц, с высоким молекулярным весом
Необходимая энергия Быстрое перемешивание Медленное помешивание
Градиент скорости Высокий Низкий
Время процесса Секунды Минуты

Поставив перед собой задачу разработать математическую модель для выражения некоторых из этих параметров, инженеры-гидравлики изучили эту проблему гидромеханики и разработали принципы определения градиента скорости и скорости сдвига, или "G-фактор".

На Рис. показано, что положено в основу этих принципов. Мы видим, что разность скоростей двух частиц, находящихся на расстоянии 0,01 фута (0,003 м), равна 0,25 фут/с (0,075 м/с), следовательно, скорость сдвига G равна 25 с1. Совершенно очевидно, что такой способ определения G-фактора непрактичен.

Однако в процессе дальнейшего усовершенствования математической модели было установлено, что скорость сдвига зависит также от расхода энергии (мощности) на единицу объема (эквивалентного продолжительности процесса обработки) и от вязкости воды. Последняя оказывает непосредственное влияние на частоту столкновений частиц, этим частично объясняется тот факт, что процессы коагуляции и флокуляции в значительной степени зависят от температуры. Эта зависимость выражается формулой:

G-фактор, обычно рекомендуемый для процессов коагуляции, при продолжительности перемешивания 30 секунд составляет около 900 с-' и изменяется обратно пропорционально времени. Требуемое время перемешивания обычно определяется путем лабораторных испытаний, об этом речь пойдет ниже. Для процессов флокуляции G-фактор должен иметь более низкую величину, в пределах от " 50 для холодной окрашенной воды с очень неустойчивыми флокулами до " 200 при использовании контактного известкового умягчителя для теплой речной воды, содержащей твердые вещества. G-фактор и в этом случае должен быть определен путем лабораторных испытаний, для того чтобы выполнить расчет флокулятора с учетом возможности изменения скорости и расхода энергии в зависимости от состава речной воды и, таким образом, изменять концентрацию твердых частиц и чувствительность флокул к сдвигу.

2.1 Химические вещества для коагуляции и флокуляции

При осветлении воды уже давно широко применяют коагулянты на основе металлов (квасцы и соли железа). Эти вещества действуют и как коагулянты, и как флокулянты. При добавлении в воду, которая при осветлении обычно имеет величину рН " 6-7, они образуют положительно заряженные частицы. В ходе такой реакции гидролиза образуются нерастворимый гелеобразный гидроксид алюминия или трехвалентного железа.

Иногда углекислый газ нарушает процесс коагуляции, выделяясь из раствора и адсорбируясь на водном осадке, в результате чего происходит не осаждение, а флотация флокул. Полиалюминийхлорид - продукт, широко используемый в Японии, устраняет проблему снижения щелочности. В структуру флокул, образующихся при гидролизе этого вещества, внедряется ион хлорида, таким образом, он уже не может вызывать образование кислоты, снижение щелочности и выделение в качестве побочного продукта СО2. Даже если первоначально в воде отсутствуют взвешенные твердые частицы, коагулянты на основе металлов образуют флокулы, которые захватывают дестабилизированные коллоидные частицы. Однако при добавлении коагулянтов на основе металлов образуется большое количество осадка и возникает проблема его утилизации, так как такой осадок обычно трудно* поддается обезвоживанию. Поэтому в целях повышения кпд центрифуг, фильтр-прессов и других устройств, применяемых для обезвоживания, квасцы и соли железа используются довольно редко.

Коагулянты на основе металлов особенно чувствительны к величине рН и щелочности. Если значение рН не соответствует заданным пределам, то качество осветления воды будет низким, а железо и алюминий в такой воде могут стать растворимыми, создавая водопользователю определенные проблемы. Чем ниже дозировка коагулянта, тем выше чувствительность флокул к изменению значения рН.

В 40-х годах стали вводить активированную двуокись кремния, что привело к значительному улучшению свойств квасцов и солей железа, применяемых в качестве коагулянтов и флокулянтов при осветлении воды. В последующее десятилетие начали применять различные органические полимеры, получившие название "полиэлектролиты", что явилось еще более значительным вкладом в технологию водоочистки.

Полиэлектролиты представляют собой крупные водорастворимые молекулы органических веществ, которые образованы небольшими блоками - мономерами, соединенными в длинную цепь. В их структуре обычно имеются центры ионообмена, которыми определяется заряд молекулы-иона. Молекулы, имеющие положительный заряд, - это молекулы-катионы, а молекулы, имеющие отрицательный заряд - молекулы-анионы. Эти молекулы реагируют с присутствующими в воде коллоидными веществами, нейтрализуя их заряд и образуя мостиковые связи (соединения) между отдельными частицами, что приводит к образованию видимого нерастворимого осадка или флокул.

Модификации полиэлектролитов

Свойства этих веществ можно модифицировать в зависимости от характера удаляемых из воды коллоидов. Полиэлектролиты могут иметь разный молекулярный вес и ионообменную емкость. Кроме того, можно получить полиэлектролиты, не имеющие заряда иона; их называют неионными полимерами. Несмотря на то, что неионные полимеры, строго говоря, не являются полиэлектролитами, при растворении их в воде они обладают почти всеми свойствами флокулянтов, и их, как правило, относят к основному семейству соединений-полиэлектролитов.

Хотя полиэлектролиты - это в основном синтетические органические вещества, в природе тоже существует огромное разнообразие таких веществ. Некоторые из них поступают в продажу после химической обработки с целью улучшения их свойств.

К катионным полиэлектролитам относятся полиамины или четвертичные амины. Ниже показана реакция гидролиза полиамина в воде:

При высоких значениях рН реакция гидролиза ввиду образования ионов ОН- смещается влево, и образуется неионный полимер. На Рис. показано, как определенный полиамин теряет свою ионообменную емкость при повышении рН.

В отличие от этого, свойства четвертичных полимеров почти не зависят от величины рН, эти полимеры остаются положительно заряженными в широких пределах значений рН.

В структуре анионных полимеров имеется карбоксильная группа (-СООН); ионизация этих полимеров происходит следующим образом:

R-COOH <-> R-COO" + Н+

Ионы водорода смещают реакцию влево, и при низких значениях рН анионные полимеры становятся неионными. Ионные свойства полиэлектролитов - это лишь один из факторов, определяющих возможность применения этих веществ в качестве коагулянтов и флокулянтов. Другие факторы, например, полярный характер неионных связей в молекуле, размер и форма молекулы, также могут иметь важное значение, а в некоторых случаях - даже более важное, чем заряд и плотность заряда. Отсюда следует, что высокомолекулярные неионные полимеры, благодаря своей способности притягивать и удерживать коллоидные частицы на полярных участках молекулы, являются эффективными флокулянтами во многих системах. Более того, благодаря размеру их молекул, они способны к образованию мостиковых связей между многочисленными мелкими частицами. При применении органических полимеров образуется меньшее количество осадка, чем при применении неорганических солей, так как они не увеличивают массу осадка и не образуют химических связей с другими ионами в воде, что могло бы привести к образованию осадка. Органические полимеры не оказывают влияния на величину рН воды, и при их использовании корректировка этой величины, как правило, не требуется.

На основе вышесказанного можно сделать вывод, что катионные полимеры, как правило, используются при низких значениях рН, а анионные - при высоких. Величина рН почти не оказывает влияния на свойства неионных и четвертичных полимеров. Однако из этого общего правила не следует, что анионные полимеры не могут применяться при низких значениях рН; просто это означает, что эти полимеры уже не являются ионными. Они могут успешно использоваться в процессах флокуляции твердых частиц при низких значениях рН благодаря лишь своим неионным связям. То же самое можно сказать о катионных полимерах; даже если они при высоких значениях рН не приобретают заряда, они могут служить эффективными коагулянтами благодаря своим полярным группам.

При использовании органических полимеров удается избежать многих проблем, возникающих при применении квасцов и солей железа. Эти полимеры состоят из длинноцепочечных органических молекул, которые образованы из множества одинаковых небольших структурных блоков, называемых мономерами. В зависимости от выбора типа мономера и способа его превращения в полимер могут быть получены полимеры самой различной конфигурации и с разным молекулярным весом. Молекулярный вес пропорционален длине цепи полимера. Широкий выбор структур и молекулярных весов обеспечивает возможность получения полимера с заданными свойствами в зависимости от условий каждого конкретного процесса коагуляции и флокуляции, однако это не практикуется из экономических соображений.

При очистке воды используются органические полимеры двух основных типов - коагулянты и флокулянты. Коагулянты состоят из положительно заряженных молекул с относительно низким молекулярным весом. Хотя среди них и наблюдается некоторая тенденция к созданию мостиковых связей, они не относятся к эффективным флокулянтам. Молекулярный вес полимеров-флокулянтов намного выше, они создают длинные мостиковые связи между небольшими флокулами, увеличивая тем самым размер частиц. Флокулянты могут быть катионными, анионными или неионными. Оптимальный выбор флокулянта для любой системы возможен только на основе результатов лабораторного анализа и испытаний на установке. В отличие от коагулянтов, полимеры-флокулянты не используются для нейтрализации.

В отличие от неорганических солей, полимеры не приводят к образованию гелеобразных флокул большого размера. В тех случаях, когда результаты улучшаются при добавке твердых частиц, может возникнуть необходимость в использовании наряду с полимерами неорганических коагулянтов или глины. Полимеры не оказывают такого влияния на величину рН и не являются такими чувствительными к изменению величины рН обрабатываемой воды, как коагулянты на основе металлов.

2.2 Активированная двуокись кремния

Некоторые неорганические соединения могут полимеризоваться в воде с образованием неорганических полимеров-флокулянтов. Примером может служить активированная двуокись кремния (иногда обозначаемая как ~ SiO2~ ). При разбавлении содержащего щелочь силиката натрия до концентрации 1,5 или 2,0% с последующей частичной нейтрализацией (обычно хлором или бикарбонатом натрия) двуокись кремния переходит в коллоидное состояние, а затем происходит ее постепенная полимеризация. Через 15-30 минут раствор разбавляют до концентрации SiO2 примерно 0,5-1,0% для прекращения дальнейшей полимери-зациц с целью получения активированной двуокиси кремния. Хотя эта процедура является достаточно сложной, получаемый флокулянт является очень эффективным средством, которое применяется вместе с квасцами для обесцвечивания воды и для повышения качества воды в процессе ее умягчения, если вода содержит органические вещества.

2.3 Применение процессов коагуляции и флокуляции

Проба мутной воды, помещенная в мерный конический сосуд, разделяется на два слоя, один из которых содержит осаждающиеся твердые вещества, а другой - твердые вещества в коллоидном состоянии (Рис. 3). При осветлении сырой воды почти всегда применяется коагулянт; это необходимо для удаления из воды коллоидных частиц и снижения показателя мутности до значений, которые обычно требуются в процессах, где используется вода. При очистке сточных вод коагулянт необходимо добавлять только в тех случаях, когда присутствие в воде взвешенных твердых веществ делает невозможным выполнение рекомендаций по качеству отводимых сточных вод; в этом случае для ускорения процесса осаждения может потребоваться добавление флокулянта.

Для того чтобы определить, какое химическое вещество и в каких количествах обеспечит получение наилучших результатов при осветлении воды, проводят два типа лабораторных испытаний: (1) испытание в широкогорлом сосуде и (2) испытание в специальном цилиндрическом сосуде. Испытание в широкогорлом сосуде проводят в тех случаях, когда концентрация взвешенных твердых частиц в потоке воды, подлежащей осветлению, не превышает примерно 5000 мг/л. Такая концентрация обычно имеет место при осветлении сырой воды, осаждении активного ила и первичной очистке сточных вод. Испытание в специальном цилиндрическом сосуде проводится для сильно загрязненных потоков воды, где количество взвешенных твердых веществ превышает "5000 мг/л. Примером сильно загрязненных сточных вод могут служить сточные воды предприятий, но подготовке и обогащению углей и других полезных ископаемых, а также шлам, образующийся при первичной очистке сточных вод.

В ходе испытания в широкогорлом сосуде имитируются условия перемешивания и осаждения, характерные для очистных сооружений. Лабораторное устройство для таких испытаний позволяет проводить до шести отдельных испытаний одновременно. Устройство для испытаний в широкогорлых сосудах имеет электродвигатель с регулированием частоты вращения, что обеспечивает возможность регулирования энергии перемешивания в сосудах.

Результаты осветления воды зависят от дозировки химического вещества, расхода энергии и продолжительности перемешивания. Введение коагулянта осуществляется при большом расходе энергии, что необходимо для диспергирования коагулянта в воде и обеспечения частых столкновений частиц. Продолжительность перемешивания может быть небольшой - менее 1 минуты. Фактическое время перемешивания уточняется в ходе дальнейшего испытания - по существу, для определения оптимальной величины G-фактора. Полимер-флокулянт, если это необходимо, добавляется в последние несколько секунд быстрого перемешивания. В последующий период медленного перемешивания происходит образование флокул, этот процесс продолжается до тех пор, пока флоккулы не достигнут таких размеров, при которых под действием сдвигающих усилий начинается разрушение мостиковых связей между флоккулами и их отделение друг от друга. Таким образом ограничиваются размеры образующихся флоккул. После медленного перемешивания в течение оптимального периода времени, который может быть определен только в результате серии повторных испытаний (как правило, продолжительность такого периода составляет от 5 до 20 минут), воду в широкогорлых сосудах отстаивают в течение 5-10 минут.

Испытание в широкогорлых сосудах с водой, в которую добавлены разные химические вещества или одно и то же вещество в различных количествах, проводится одновременно, после чего полученные результаты сравнивают. При этом сравнивают скорость осаждения флокул, прозрачность воды после отстаивания или содержание в ней взвешенных твердых частиц, а также объем полученного осадка (если можно его определить) в разных сосудах. Несмотря на то, что прозрачность можно определить визуально, при помощи нефелометра проводят более точные стандартные замеры. Для подтверждения стандартов качества воды после осветления проводят и другие анализы, например, для определения величины рН, ВПК (биологическая потребность в кислороде), цветности, ХПК (химическая потребность в кислороде) и концентрации растворимых металлов.

Для испытаний в специальном цилиндрическом сосуде с целью определения скорости оседания взвешенных твердых частиц требуется мерный цилиндр с пробкой емкостью 500 мл, секундомер и лабораторно-химическая посуда для дозирования испытываемого химического вещества. Пробу грязной воды помещают в цилиндрический сосуд, добавляют химическое вещество и несколько раз медленно переворачивают сосуд. В данном случае расход энергии на перемешивание намного меньше, чем при испытании в широкогорлом сосуде. Так как концентрация твердых частиц здесь гораздо выше, то для того чтобы обеспечить нужную частоту столкновений частиц, перемешивание можно осуществлять с меньшими затратами энергии. После перемешивания цилиндрический сосуд устанавливают вертикально и наблюдают за выделением из воды фракции оседающих твердых частиц. Продолжительность процесса оседания и содержание твердых частиц регистрируют и полученные данные наносят на график. Как и при испытании в широкогорлом сосуде, выполняют ряд анализов уже очищенной воды; тем не менее основная задача обычно заключается в том, чтобы обеспечить быстрое осаждение. После проверки действия коагулянтов и флокулянтов при различных дозировках и сравнения скоростей осаждения из них выбирают те химические вещества, которые обеспечивают наибольший эффект.[1-5]

Обесцвечивание воды

Выбор эффективной программы обработки химическим веществом для обесцвечивания воды осуществляется в ходе испытаний в таких же широкогорлых сосудах, как и в случае удаления взвешенных твердых веществ, однако результаты этих испытаний имеют существенные различия. Флокулы, образующиеся в процессе коагуляции органического вещества, легко разрушаются, поэтому очень важно, чтобы при проведении испытаний в широкогорлых сосудах энергия, расходуемая на перемешивание, и сдвигающие усилия в процессе флокуляции были такими же, как на промышленных водоочистных установках.

Цветность воды, в большинстве случаев обусловлена присутствием смеси коллоидных органических соединений, являющихся продуктами распада высокомолекулярных веществ, выделяемых клетками живых организмов. По своим свойствам эти вещества сходны с полиэлектролитами, которые используются при очистке воды. В действительности, самые первые технологии очистки воды были основаны на использовании природных органических веществ, например, крахмала, в качестве диспергаторов и флокулянтов. Среди них - гуминовая кислота (полимер, содержащий фенольные группы), полисахариды (полимеры, подобные сахару и целлюлозе), полипептиды (белковые полимеры), а также лигнин и дубильные вещества (тоже имеющие отношение к целлюлозе). Почти все эти вещества являются анионными или неионными полимерами. Поэтому не удивительно, что для их коагуляции можно использовать катионные вещества, а необходимое количество коагулянта находится в прямой зависимости от цветности воды.

При проведении испытаний в широкогорлом сосуде в качестве коагулянта в первую очередь, как правило, выбирают квасцы. Если вводить квасцы в большем количестве, чем это требуется для коагуляции, то происходит формирование флокул из частиц, образовавшихся в процессе коагуляции. Пределы изменения величины рН очень небольшие, обычно примерно 4,8 - 5,5, а изменения величины рН приводят к дисперсии флокул и помутнению воды. В большинстве случаев вода природных источников, характеризующаяся какой-либо цветностью, является слабощелочной, а используемые для коагуляции квасцы, часто снижают природную щелочность, так что может потребоваться добавка щелочи для корректировки величины рН. После коагуляции и образования флокул под действием квасцов для повышения устойчивости флокул и ускорения их осаждения добавляют анионный полимер. Важным влияющим фактором является температура; в Канаде и в северных районах США обнаружено много природных источников с окрашенной водой, а выбранная технология обработки должна обеспечивать получение хороших результатов при температуре 32°F (0°С), когда вязкость значительно увеличивает сдвигающие усилия и препятствует осаждению, значительно усложняя процедуру испытаний в широкогорлых сосудах. Другим потенциальным осложняющим фактором обычно является необходимость корректировки величины рН очищенной воды, для того чтобы сделать ее менее агрессивной, чем вода, имеющая рН = 5,5. Вещество, которым обусловлена цветность воды, является как бы кислотно-основным индикатором (рН-индикатором), и повышение величины рН приводит к изменению цветности, что, в большинстве случаев не представляет собой серьезную проблему.

При обесцвечивании воды вместо квасцов частично можно использовать некоторые катионные полиэлектролиты, что позволит проводить обработку воды при более высоких значениях рН и не приведет к снижению щелочности за счет увеличения дозировки квасцов, которое потребовалось бы в противном случае. В Таблице 8.5 приведено сравнение результатов, полученных при применении обычной технологии обработки квасцами, и результатов, полученных при обработке квасцами в сочетании с полиамином.

Обработка сточных вод, имеющих определенный показатель цветности, например, сточных вод целлюлозно - бумажных заводов, иногда связана с большими трудностями, чем обработка воды из природных источников. Для того чтобы выбрать подходящие коагулянты, необходимы опыт и изобретательность; это - такая проблема водоочистки, для решения которой пока еще требуется творческий подход, а не научные знания. Примером может служить проведенный анализ сточных вод текстильной промышленности, показатель цветности которых не уменьшался после обработки квасцами с последующей корректировкой величины рН путем добавления щелочи; потребовалась дополнительная обработка алюминатом с последующей корректировкой величины рН путем добавления кислоты. Теоретическое объяснение этому было дано только после того, как исследователь методом проб и ошибок нашел правильное решение проблемы.



Информация о работе «Модификация полиэлектролитов наночастицами»
Раздел: Химия
Количество знаков с пробелами: 51513
Количество таблиц: 1
Количество изображений: 9

Похожие работы

Скачать
48339
0
0

... большая часть проектов физического и физико-химического плана, как уже отмечалось выше, посвящена многокомпонентным полимерным системам. К ним можно отнести такие традиционные двухкомпонентные системы, как растворы и гели полимеров. Основная современная тенденция в этой области физической химии полимеров - акцент на природные полимеры и макромолекулы, способные моделировать определенные типы ...

Скачать
40343
0
5

... вискозиметра в шарике, выше верхней метки над измерительным шариком. Измеряется время истечения жидкости между метками.   3.Результаты и обсуждение   Цель работы: 1.         Исследование комплексообразования ЭЭАКК/АК с ионом стронция вискозиметрическим методом анализа. 2.         Изучение влияния различных факторов (температуры, ионной силы, pH) на поведение сополимера ЭЭАКК/АК и комплекса ...

Скачать
60637
18
17

... 5. Бектуров Е.А., Бимендина Л.А., Кудайбергенов С.Е. «Полимерные комплексы и катализаторы», Алма-Ата, Наука, 1982г. 6. Л.А. Бимендина, М.Г. Яшкарова, С.Е. Кудайбергенов, Е.А. Бектуров. «Полимерные комплексы», Семипалатинск, 2003г. 7. С.С. Воюцкий. «Адгезия и аутогезия полимеров», «Ростехиздат», М., 1963г. 8. А.Г.Гавриленко, К.С.Тусупова, С.В.Тарасенко. «Оформление курсовых и дипломных работ ...

Скачать
109782
5
3

... 4 5. » 80 » 125 5 6. » 125 » 250 7 7. » 250 » 450 10 9. » 400 » 800 14 Глава 3. Электрофизический способ очистки и обеззараживания питьевой воды 3.1 Очистка воды с помощью нанотехнологий Качество питьевой воды имеет огромное значение для здоровья людей. Все чаще водопроводная вода по своему составу напоминает химическую и бактериологическую смесь, опасную для нашего здоровья. ...

0 комментариев


Наверх