3.2 Физико-химические основы процесса флокуляции
Механизм действия флокулянтов основан на следующих явлениях: адсорбции молекул флокулянта на поверхности коллоидных частиц; ретикуляции (образование сетчатой структуры) молекул флокулянта; слипании коллоидных частиц за счет сил Ван-дер-Ваальса. При действии флокулянтов между коллоидными частицами образуются трехмерные структуры, способные к более быстрому и полному отделению жидкой фазы. Причиной возникновения таких структур является адсорбция макромолекул флокулянта на нескольких частицах с образованием между ними полимерных мостиков [4].
Процесс адсорбции протекает в две ступени: сначала каждая макромолекула прикрепляется несколькими сегментами к одной частице (первичная адсорбция), затем свободные сегменты закрепляются на поверхности других частиц, связывая их полимерными мостиками (вторичная адсорбция).
Возможны различные механизмы закрепления макромолекул флокулянтов на поверхности частиц. Неионогенные полиэлектролиты закрепляются на частицах с помощью полярных групп (чаще всего гидроксильных) благодаря образованию водородных связей между водородом гидроксила и кислородом, азотом и другими атомами, находящимися на поверхности частиц. Наличие водородных связей установлено экспериментально с помощью инфракрасной спектроскопии. Хотя энергия водородной связи значительно меньше энергии химической связи, большое количество гидроксильных групп способствует прочному закреплению молекул флокулянта.
Анионные флокулянты способны закрепляться на поверхности частиц не только с помощью водородных связей, но и благодаря химическому взаимодействию (хемосорбции) анионов с катионами, находящимися на поверхности частиц.
Катионные полиэлектролиты, помимо образования агрегатов по механизмам, аналогичным вышеизложенным, способствуют флокуляции благодаря нейтрализации отрицательного заряда частиц.
Многочисленные опыты показывают, что введение в воду, содержащую отрицательно заряженные частицы коллоидных примесей, анионных полиэлектролитов (например, полиакриламида) не приводит к хлопьеобразованию независимо от дозы флокулянта и условий флокуляции (рН, температуры и т.д.). Для успешной флокуляции необходимо предварительное снижение агрегативной устойчивости дисперсной системы путем коагуляции электролитами, гетерокоагуляции и т.п.
Катионные флокулянты способны снижать агрегативную устойчивость дисперсных систем и в ряде случаев могут обеспечить их коагуляцию без введения коагулянтов [2].
Флокулянты, применяемые для очистки
В настоящее время для очистки сточных вод применяется значительное число различных флокулянтов как неионогенных, так и полиэлектролитов. Много новых марок испытано и внедряется в промышленность.
При подборе наиболее приемлемого флокулянта следует учитывать природу частиц дисперсной фазы и свойства макромолекул флокулянта.
Флокулянты обычно подразделяют на три группы:
1) неорганические;
2) природные органические;
3) синтетические органические.
Неорганические флокулянты. Основным неорганическим высокомолекулярным флокулянтом является активная кремниевая кислота (АК). АК представляет собой частично структурированный коллоидный раствор (золь) диоксида кремния и отвечает общей формуле xSiO2*yH2O.
АК не является промышленным продуктом, ее приготовляют на месте применения. Сырьем служит силикат натрия (жидкое стекло) и активирующий агент – минеральные кислоты, хлор, диоксид углерода или серы, сульфат или оксихлорид алюминия, алюминат натрия и др.
Флоккулирующая способность золей АК зависит преимущественно от образования в процессе их созревания агрегатов коллоидных размеров, представляющих собой цепеобразные, разветвленные структуры, способные взаимодействовать с коллоидными частицами и грубодисперсными взвесями гидроксидов алюминия, железа, магния и других металлов с образованием крупных, прочных и тяжелых хлопьев.
АК является анионным полиэлектролитом и отрицательный заряд макроиона АК облегчает адсорбционное и адгезионное взаимодействие АК с положительно заряженными частицами.
Природные органические флокулянты. К природным высокомолекулярным органическим флокулянтам относятся: крахмал, декстрин, эфиры целлюлозы, альгинат натрия и гуаровые смолы.
Растворимый в воде крахмал является смесью линейного полимера – амилозы и разветвленного полимера – амилопектина и относится к неионогенным флокулянтам. Флоккулирующая способность крахмала зависит от его молекулярной массы и содержания амилозы и амилопектина, которые определяются видом растения (например, картофель, кукуруза), из которого получен крахмал.
Декстрины получают кислотной обработкой крахмала при различных температурах, концентрациях кислоты и т.д. Получаемые анионные полиэлектролиты обладают значительной флоккулирующей способностью.
За рубежом выпускают флокулянты на основе крахмала: Виспрофлок 20, Виспрофлок 75, Флокгель, Азим и др.
Альгинат натрия – полиэлектролит анионного типа, получаемый из морских водорослей. Молекулярная масса 15-170 тыс. Применяют в Японии, Англии, США под названием: Велгум, Келкзоль, Келджин W.
Карбоксиметилцеллюлоза (КМЦ) – полиэлектролит анионного типа, получаемый путем обработки щелочной целлюлозы хлоруксусной кислотой. В воде растворяется со степенью этерификации более 40%. Молекулярная масса 40-110 тыс. За рубежом КМЦ выпускается под названиями: Флокулес, СМС.
Гуаровые смолы получают из семян бобовых растений. Флокулянты на основе гуаровых смол – неионогенные полимеры. Выпускаются за рубежом под названиями: Джагуар WP, MRL, Суперзоль.
Синтетические органические флокулянты. В настоящее время выпускается большое число неионогенных, анионных и катионных синтетических органических высокомолекулярных флокулянтов, которые постепенно вытесняют природные флокулянты.
Полиакриламид (ПАА) получил наиболее широкое распространение. ПАА получают обработкой акрилонитрила 85% раствором серной кислоты с последующей полимеризацией акриламида. Выпускаемый ПАА имеет молекулярную массу (1-6)*106, хорошо растворяется в воде. Концентрированные растворы ПАА представляют собой гелеобразную массу; разбавленные водные растворы имеют значительную вязкость. ПАА в присутствии кислот и щелочей частично гидролизуется с образованием акриловой кислоты и ее солей.
Для очистки воды используют сополимеры акриламида и акрилатов: технический полиакриламид (часто называемый просто ПАА) – сополимер с содержанием акрилатов менее 10% и гидролизованный полиакриламид (ГПАА) – сополимер, содержащий более 10% акрилатов.
Технический ПАА благодаря наличию карбоксильных групп в молекуле является анионным полиэлектролитом, диссоциирующим в водных растворах. Токсичность ПАА очень велика.
ГПАА, являясь амфотерным полиэлектролитом, может диссоциировать в зависимости от рН среды по основному и кислотному механизмам. Применение ГПАА в некоторых случаях дает положительные результаты.
Полиакриламидные флокулянты получили широкое применение для очистки сточных вод химических и нефтехимических производств. ПАА успешно используется в процессах очистки сточных вод от эмульгированных частиц нефтепродуктов и смол, сточных вод производств полистирольных пластмасс, поливинилхлорида, сульфатной целлюлозы идр.
Полиэтиленимин – эффективный катионный флокулянт, хорошо растворимый в воде; молекулярная масса достигает 100 тыс. За рубежом флокулянты на основе полиэтиленимина выпускают под названием: Седипур-КА, Сепаран С-120 и др.
Натриевые соли полиакриловой и полиметакриловой кислот являются анионными полиэлектролитами, эффективными в области рН=3-7. Молекулярная масса этих флокулянтов может достигать нескольких миллионов [2].
Cовременные коагулянты и флокулянты
Органические коагулянты и флокулянты - синтетические полимеры (полиэлектролиты), используемые для механической очистки воды от взвешенных и коллоидных частиц.
Коагулянты - дестабилизируют коллоидную систему путем нейтрализации сил различной природы, обеспечивающих ее устойчивость.
Флокулянты - увеличивают размер хлопьев, образовавшихся в ходе коагуляции, и агломерация взвешенных частиц для их механического удаления.
Прежде коагуляция производилась с использованием неорганических коагулянтов, таких как сульфат алюминия и хлорид железа (до появления в 60-х годах синтетических органических полимеров). Вначале полимеры использовались как добавка к неорганическим коагулянтам для более интенсивного образования хлопьев. Сегодня эти полимеры применяются как основные коагулянты, полностью или частично заменяя неорганические.
Полимерные коагулянты оказались более экономичными в широком диапазоне процессов, включая осаждение, флотацию и фильтрацию. Для данных процессов полимерные коагулянты доказали свою способность стабильно обеспечивать качество очищенной воды, соответствующее установленным стандартам, при оптимальной надежности, эффективности и экономичности.
Неионный полиэлектролит
Эти флокулянты представляют собой акриламидные гомополимеры, получаемые путем полимеризации акриламидных мономеров. Плотность их заряда нулевая, т.е. они не имеют ни положительного, ни отрицательного электрического заряда. Они могут поставляться с молекулярной массой от 5 до 15 миллионов.
Анионный полиэлектролит
Эти флокулянты получаются путем сополимеризации мономеров акриламида и акрилата натрия в различных пропорциях. Пригодность каждого продукта из серии для флокуляции конкретной суспензии определяется количеством функциональных групп.
Они отрицательно заряжены с плотностью заряда от <1 до 50% и могут поставляться с молекулярной массой от 5 do 22 миллионов.
Катионные полиэлектролиты
Эти флокулянты получаются путем сополимеризации мономеров акриламида и метилхлорида ADAM триметиламмонийэтилакрилат хлорид).
Они положительно заряжены, имеют плотность заряда в диапазоне от >0 до <15% и поставляются с молекулярными массами от З до 15 миллионов.
... большая часть проектов физического и физико-химического плана, как уже отмечалось выше, посвящена многокомпонентным полимерным системам. К ним можно отнести такие традиционные двухкомпонентные системы, как растворы и гели полимеров. Основная современная тенденция в этой области физической химии полимеров - акцент на природные полимеры и макромолекулы, способные моделировать определенные типы ...
... вискозиметра в шарике, выше верхней метки над измерительным шариком. Измеряется время истечения жидкости между метками. 3.Результаты и обсуждение Цель работы: 1. Исследование комплексообразования ЭЭАКК/АК с ионом стронция вискозиметрическим методом анализа. 2. Изучение влияния различных факторов (температуры, ионной силы, pH) на поведение сополимера ЭЭАКК/АК и комплекса ...
... 5. Бектуров Е.А., Бимендина Л.А., Кудайбергенов С.Е. «Полимерные комплексы и катализаторы», Алма-Ата, Наука, 1982г. 6. Л.А. Бимендина, М.Г. Яшкарова, С.Е. Кудайбергенов, Е.А. Бектуров. «Полимерные комплексы», Семипалатинск, 2003г. 7. С.С. Воюцкий. «Адгезия и аутогезия полимеров», «Ростехиздат», М., 1963г. 8. А.Г.Гавриленко, К.С.Тусупова, С.В.Тарасенко. «Оформление курсовых и дипломных работ ...
... 4 5. » 80 » 125 5 6. » 125 » 250 7 7. » 250 » 450 10 9. » 400 » 800 14 Глава 3. Электрофизический способ очистки и обеззараживания питьевой воды 3.1 Очистка воды с помощью нанотехнологий Качество питьевой воды имеет огромное значение для здоровья людей. Все чаще водопроводная вода по своему составу напоминает химическую и бактериологическую смесь, опасную для нашего здоровья. ...
0 комментариев