3. Использование метанола
На основании лабораторных и дорожных испытаний было установлено, что метанол представляет собой перспективное «чисто» сгорающее автомобильное топливо. При работе на метаноле возникают небольшие проблемы, которые могут быть легко преодолены. Ряд автомобилей, производимых фирмой «Фольксваген» был переведен на метанол, На основании испытаний установлено, что при работе на метаноле достигалась большая мощность вследствие более высокой скрытой теплоты испарения метанола, что позволяло охлаждать горючую смесь в большей степени, чем при испарении бензина. Благодаря этому можно увеличить плотность топливно-воздушной смеси, а, следовательно, и массовый расход. Выигрыш в мощности при работе на метаноле достигает примерно 10 % [7].
При эксплуатации автомобиля на метаноле возникает необходимость в использовании вспомогательного устройства для холодного запуска, если окружающая температура ниже 8°С, однако дальнейшие испытания автомобилей на метаноле показали приемлемую способность к движению при низких температурах.
Топливная экономичность определялась наряду с анализом отработавших газов, а также исследованием способности автомобилей на метаноле к движению и определением удельного расхода топлива. В связи с тем, что энергоемкость метанола меньше чем у бензина, при работе на нем удельный расход топлива значительно больший, чем при работе на бензине. Это означает, что метанол сгорает более эффективно, чем бензин.
Эксплуатация двигателей на метаноле дает возможность снизить содержание загрязнений в отработавших газах, а, следовательно, и загрязнение окружающего воздуха. Содержание монооксида углерода в отработавших газах при работе на метаноле примерно такое же, как и при работе на бензине, но опыты на автомобилях фирмы «Фольксваген» показали возможность снижения содержания СО в отработавших газах после метанола особенно при малой частоте вращения двигателя [7].
На метаноле удаётся значительно снизить в отработавших газах содержание окислов азота (NOX). Кроме того, в отработавших газах наблюдалась значительно меньшее содержание и несгоревших углеводородов. В выхлопах автомобилей было обнаружено всего около 10% данных загрязнителей. Таким образом, метанол как автомобильное топливо с экологической точки зрения по содержанию в отработавших газах СН вполне приемлем.
Содержание альдегидов в отработавших газах при одинаковых степенях сжатия двигателя, работающего на метаноле, значительно выше, чем на бензине. Однако содержание альдегидов может быть снижено путём увеличения степени сжатия двигателя и ограничением процесса горения путем добавления к метанолу до 10% воды.
Содержание в отработавших газах полициклических ароматических углеводородов, в том числе канцерогенных, при работе на метаноле более чем на порядок меньше, чем на бензине.
Спиртовые топлива целесообразно использовать главным образом в двигателях с искровым зажиганием. Организация работы дизеля на данном виде топлива затруднительна из-за низкого значения цетанового числа ( на уровне 10) [8].
Наиболее выгодно использовать смесь бензина с 4,75% метанола и таким же количеством сольвента, необходимого для предотвращения фазового разделения смеси в присутствии воды, в которой метанол хорошо растворим [9].
Отличная детонационная стойкость метанола дает возможность увеличить степень сжатия двигателя до 14 против 10 для бензина. При этом достигается улучшение расхода топлива и коэффициента полезного действия, а также снижение содержания в отработавших газах NOX и альдегидов.
Таким образом, спиртовые топлива превосходят бензиновые с точки зрения экологической безопасности и до настоящего времени не получили распространения лишь из-за двух основных причин: более высокой стоимости спиртов по сравнению с бензином и отсутствием технических или экономических преимуществ, компенсирующих эту высокую стоимость. К тому же метанол сильно ядовит.
Что касается дизельных двигателей, то в них можно использовать продукт разложения метанола – ДМЭ.
4. Получение диметилового эфира дегидратацией метанола
Дегидратация метанола с получением диметилового эфира-исторически первый путь проведения данного синтеза. Этому процессу ещё с 1960-х годов было посвящено множество работ советских и зарубежных учёных [10, 13 - 16]. Реакция дегидратации метанола на -АL2О3 широко использовалась для исследования состояния поверхности катализатора в условиях реакции. Установлено [13], что основные компоненты реакционной среды - метанол, вода, ДМЭ - адсорбируются на поверхности диссоциативно с образованием метилированных и гидроксилированных центров. В связи с разработкой процесса получения компонентов моторных топлив из метанола эта реакция в последнее время приобрела промышленное значение, и вновь появился интерес к кинетике и механизму ее протекания [11, 16 - 17].
В работе [16] изучение кинетики проводилось путем варьирования объемной скорости подачи метанола. Проведенные по результатам кинетических измерений на катализаторе -А12О3 (195-285°С) расчеты показали, что кинетика реакции (2):
2СН3ОН = СНзОСНз + Н2О (2)
на изученном катализаторе описывается уравнением второго порядка:
W=k*P2CHз0H
Постоянные уравнения Аррениуса имели следующие значения:
В=2.4*108; Е=21800 ккал/моль (91342 кДж/моль)
На основании данных о бимолекулярности реакции, полученных в [16] и других результатов, авторы [13] провели исследование механизма дегидратации метанола методом ИК спектроскопии. В работах [13 - 14] была подробно изучена адсорбция метанола и ДМЭ на поверхности окиси алюминия в интервале температур 20-450°С, причем поверхность адсорбента в зависимости от обработки была гидратированной или дегидратированной.
На основании проведенных исследований были сделаны выводы о том, что при повышении температуры имеют место различные виды адсорбции как для ДМЭ (адсорбция на связанных водородной связью гидроксильных группах поверхности; взаимодействие с образованием координационной связи; образование структур с активацией водорода метильной группы поверхностью и образование карбонатно-карбоксилатных структур), так и для метанола (адсорбция на связанных водородной связью гидроксильных группах поверхности, адсорбция с образованием поверхностного метилата, комплекса с координационной связью и карбонатно-карбоксилатных структур).
На основании сравнения спектральных данных в совокупности с полученными ранее термодесорбционными результатами [18], авторы пришли к выводу, что протекание реакции дегидратации метилового спирта до диметилового эфира идет с образованием поверхностного метилата и комплекса с координационной связью. Карбонатно-карбоксилатные структуры не являются промежуточными соединениями при дегидратации спирта, но ответственны за протекание побочных реакций. Кроме того, авторы пришли к выводу о том, что «свободные» гидроксилы поверхности не принимают участия в адсорбции, а также что адсорбция ДМЭ на дегидратированной поверхности А12О3 протекает с отщеплением воды, дегидратирующей поверхность практически без энергии активации.
На основании сделанных выводов авторы предположили, что каталитической дегидратации спирта до эфира предшествует хемосорбция, которая на окиси алюминия протекает с образованием метилата и координационной связи кислород спирта – алюминий решетки. Другая хемосорбционная форма, через которую протекает реакция, возникает при образовании координационной связи между атомом кислорода спирта и атомом алюминий решётки.
Реакция протекает между двумя молекулами спирта, связанными с поверхностью координационной связью. В активном четырехчленном циклическом комплексе происходит одновременный изоэнергетический разрыв и образование двух связей С-О и двух связей О-Н. Образующийся при реакции эфир остается на поверхности связанным координационной связью. Лимитирующей стадией процесса может быть как реакция на поверхности через циклический активный комплекс, так и десорбция эфира с разрывом координационной связи [13]. Помимо основной реакции дегидратации метилового спирта на -Аl2О3 протекают побочные процессы, сопровождающиеся выделением в газовую фазу монооксида углерода, водорода и углеводородов. Эти побочные процессы являются результатом разложения карбонатно-карбоксилатных структур.
В работе [19] показано, что при пропускании над цеолитом NaX метанола, содержащего йодистый метил, интенсивность образования ДМЭ была выше, чем при пропускании чистого метанола. Авторы объясняют это тем, что галоидные алкилы склонны ионизироваться по механизму SN1 с образованием карбоний-ионов, что существенно способствует образованию простых эфиров. При этом, даже без использования активирующей добавки выход ДМЭ на цеолите NaX выше, чем на применяемом ранее катализаторе -А12О3 на 2-5% в интервале температур 250-400°С [12] и составляет 90% масс. при 250°С практически линейно снижаясь до 75% масс. при 400°С. Конверсия метанола как на NaX, так и на -А12О3 изменялась от 80 до 100% масс, при варьировании температуры реакции от 250 до 400°С.
В работе [20] описаны катализаторы Cu-Hect и Cu-Bent, которые также очень активны в дегидратации метанола до диметилового эфира. Их активность возрастает с увеличением кислотности среды. Свойства этих цеолитных катализаторов очень похожи, причем Cu-Bent является природным минералом, a Cu-Hect сделанным искусственно.
Кроме цеолитов разрабатывается также различные модификации катализаторов на основе -А1203. Носителем для катализатора может быть любое инертное вещество, но окись алюминия в ходе гидротермического процесса дегидратации за счет спекания подвергается довольно быстрому старению, что приводит к заметному снижению конверсии спирта в простой эфир уже через 200 часов работы катализатора [21]. Указанный недостаток присущ и катализатору на носителе, поскольку кремневое производное играет роль инертной подложки, служащей лишь носителем активной составляющей катализатора, на его поверхности также имеет место наличие ОН-групп, способствующих спеканию. Авторы [21] предлагают модифицировать поверхность оксида алюминия слоем двуокиси кремния в количестве 8-18% от веса катализатора. Такая модификация позволяет проводить процесс по крайней мере 500 часов без заметного снижения конверсии, которая находится в пределах 75-79 % все время работы катализатора.
0 комментариев