2.2.2.3 Ход анализа

Навеску 1 г растертого в агатовой ступке металла (или 0,2 – 0,5 г при содержании мышьяка выше 0,0005%) помещают в стакан емкостью 100 мл, добавляют 5 мл азотной кислоты (пл. 1,4), накрывают стеклом и нагревают на плитке, осторожно покачивая стакан, избегая бурного кипения и излишнего испарения кислоты. Нагревают до превращения металла в белую массу. Охлаждают, снимают стекло, дают улетучиться окислам азота, насыпают 6 г тартрата аммония (при навеске 0,5 г сурьмы достаточно 5 г тартрата), приливают воды до 80 мл и нагревают при помешивании до растворения сурьмяной кислоты. Раствор переливают в стакан емкостью 300 мл и разбавляют водой до 150 мл. Охлаждают, добавляют 10 мл раствора однозамещенного фосфата калия, 10 мл магнезиальной смеси и при помешивании – раствор аммиака до слабого запаха и начала образования осадка. Затем приливают еще 10 мл раствора аммиака, перемешивают и оставляют на 7 – 12 ч. Осадок отфильтровывают через бумажный фильтр (7 см) и 15 – 16 раз промывают малыми порциями 1%-ного раствора аммиака. Осадок на фильтре и стенках стакана растворяют в горячей серной кислоте, разбавленной (1: 10), собирая раствор в колбу прибора для отгонки хлорида мышьяка(III) (рис.2.2), прибавляют 0,3 г сернокислого гидразина (если необходимо, берут больше) и 10 мл концентрированной хлористоводородной кислоты.

Рисунок 2.2 Прибор для отгонки хлорида мышьяка(III): 1 – капельная воронка; 2 – предохранительная склянка; 3 – реакционная колба; 4 – холодильник.

В маленький стакан наливают 10 мл холодной воды и погружают в него конец холодильника. Раствор в колбе медленно нагревают до 107 °С [7]. Собирают 100 – 110 мл отгона и определяют мышьяк с помощью спектрофотометра КФК-3.


2.3 Анализ полученных результатов

Расшифровка результатов предварительных испытаний и качественного анализа:

Таблица 1 Предварительное испытание вещества нагреванием в тугоплавкой пробирке

Видимые изменения Причини Возможный состав
Вещество частично улетучивается. При этом есть возгон белого цвета

NH4Г

HgCl2, HgBr2

As2O3, As2O5

Галогениды аммония

Соединения ртути

Окислы мышьяка

Таблица 2 Предварительное испытание вещества с перлом буры

Цвет перла Элементы, вызывающие окраску при перлах из Na2B4O7
в окислительном пламени в восстановительном пламени
в горячем состоянии в холодном состоянии в горячем состоянии в холодном состоянии
Бесцветный Pb, Bi, Sb, Cd Pb, Bi, Sb, Cd, Fe Mn, Cu Mn, Cu
Серый Ag, Pb, Bi, Sb, Cd, Zn, Ni Ag, Pb, Bi, Sb, Cd, Zn, Ni

Таблица 3 Предварительное испытание вещества действием кислоты

Кислота Видимые изменения Причини Возможный состав

3 М H2SO4 на холоду

Последующее кипячение с 3 М H2SO4

Выделяется газ с запахом тухлых яиц H2S Сульфиды
Отличий не зафиксировано
Последующее кипячение с 18 М H2SO4

Выделяется бесцветный газ:

с резким запахом, дымит на воздухе

HCl Хлориди

Таблиця 4 Перевод вещества в раствор

№ опыта Растворитель Видимые изменения растворения
на холоду при нагревании
1 H2O
2 3 М HCl
3 12 М HCl частично (остался белый с желтым оттенком осадок)
4 3 М HNO3
5 15 М HNO3 частично (остался белый с желтым оттенком осадок)
6 3 HCl: 1 HNO3 частично (остался белый с желтым оттенком осадок)

Белый с желтым оттенком осадок может быть:

некоторые соли серебра – AgCl, AgBr, AgI;

некоторые сульфаты – BaSO4, PbSO4, CaSO4.

Таблица 5 Отчетная карточка для катионов1-2 групп

Объект Реактив Результат Вывод Возможный состав
Осадка Раствора
1 pF0 индикатор окрашенный рН5
2 pР0+ pF0 3 моль/л HCl, 3 моль/л H2SO4 Р белый Есть 1-2 группа AgCl, PbSO4, BaSO4, SrSO4 H+, HSO4-, Ca(II)
3 P2 15 моль/л NH3 Р остался PbSO4, BaSO4, SrSO4, CaSO4 Ag(NH3)+, Сl-
4 F3 3 моль/л HNO3, Р Есть Ag+ AgCl NH4+, NO3-
5 Р3 6 моль/л NaOH Р остался BaSO4, SrSO4, CaSO4 Pb(OH)3-, SO42-, Na+
6 F5 HAc рН45 Pb2+, SO42-, Na+, Ac-
7 pF6 KI Р желтый Есть Рb2+ PbI2 Na+, SO42-, Ac-, К+, I-
K2CrO4 Р желтый PbCrO4 Na+ , SO42-, К+, CrO42-, Ac-
8 P5 Насыщенный Na2CO3, to Р остался BaCO3, SrCO3, CaCO3, BaSO4 Na+, CO32-, SO42-
9 P6 HAc P часть BaSO4 Ca2+, Sr2+, Ba2+, CО22-, Ac-
10 F7 K2CrO4 Р желтый Есть Ва2+ BaCrO4 Ca2+, Sr2+, Ac-, K+, CrO42-
11 F8 Насыщенный Na2CO3 Нет Sr2+, Са2+

Таблица 6 Отчетная карточка для катионов 3 группы

Объект Реактив Результат Вывод Возможный состав
Осадка Раствора
1 F9 6 моль/л NaOH Р щелочная среда 3-5 группа катионов 3-5 группа катионов
2 pР10 + pF10 H2O2, 6 моль/л NaOH, to Р гидроокиси 4-5 группы катионов, SnO(OH)2 AsO43-,CrO42-, Zn2+, Al3+, Sn(IV), Cu2+, Cd2+, Ca2+, OH-, щелочные металлы
33 F11 индикатор рН1 AsO43-,CrO42-, Zn2+, Al3+, Sn(IV), Cu2+, Cd2+, Ca2+, OH-, щелочные металлы
14 F12 дитиол Нет Sn AsO43-,CrO42-, Zn2+, Al3+, Cu2+, Cd2+, Ca2+, OH-, щелочные металлы
5 F13 NaAc, рН4 AsO43-,CrO42-, Zn2+, Al3+, Sn(IV), Cu2+, Cd2+, Ca2+, Ac-, лужні метали
6 F14 фильтр бумажный, морин, 2 моль/л HCl Нет Al AsO43-,CrO42-, Zn2+, Cu2+, Cd2+, Ca2+, Ac-, щелочные металлы
7 pF14 HAc рН5–7
8 F15 Co(NO3)2, (NH4)2Hg(SCN)4 +2 хв. Р голубой Есть Zn2+ ZnHg(SCN)4 + CoHg(SCN)4 AsO43-, CrO42-, Cu2+, Cd2+, Ca2+, Ac-, щелочные металлы
9 F16 бензидин Нет CrO42- AsO43-, Cu2+, Cd2+, Ca2+, Ac-, щелочные металлы
10 F17 AgNO3 Р шоколадный Есть As Ag3AsO4 Cu2+, Cd2+, Ca2+, Ac-, щелочные металлы

Таблица 7 Отчетная карточка для катионов 4 – 5групп

Объект Реактив Результат Вывод Возможный состав
Осадка Раствора
1 pP11 H2O2, 3 моль/л HNO3, to P белый Есть Sb? SbO(OH)3 все остальные катионы 4-5 групп
2 P17 12 моль/л HCl F все остальные катионы 4-5 групп
3 F18 родамин Б P фиолетовый Есть Sb соединение сурьмы с родамином Б

Таблица 8 Отчетная карточка для анионов

Объект Реактив Результат Вывод Возможный состав
Осадка Раствора
1 F0 CdAc2 Р желтый Есть 3-тя группа CdS, Cd(BO2)2 4-5 группы
2 F1 CuSO4 Р желтый → Р Чорный Есть S2- CuS
3 F2 AgNO3 Р белый AgCl
4 F3 раствор Фаургольта Р → F Есть Cl-? Ag(NH3)2+, Сl-
5 F4 3 моль/л HNO3 Р, белая каламуть Есть Cl- AgCl

На основании макроскопических наблюдений (рис. 2.3) и качественного анализа (таблици 5 – 8) неизвестного минерала, делаем вывод (основываясь на литературных данных [10]), что это антимонит (Sb2S3).

Рисунок 2.3 Минерал антимонит

Полученные результаты измерений обрабатываем математически.

Рисунок 2.4 Зависимость оптической плотности A (ось ординат) от концентрации c∙10-5 (ось абсцисс) для стандартных растворов арсената

Масса навески антимонита 1,0565 г.

Оптическая плотность у 5 раз разбавленного раствора равна 0,258.

Формула для вычислений:

где n – разбавление (например, в 5 раз).

После вычислений получаем результат 0,57% As в антимоните (Sb2S3).



Информация о работе «Принципы определения примесей арсена в неизвестном минерале»
Раздел: Химия
Количество знаков с пробелами: 69637
Количество таблиц: 11
Количество изображений: 4

Похожие работы

Скачать
63687
3
0

... у поверхности Tmax(K) 270 Tmin(K) 200 Среднее давление у поверхности P (атм.) 6*10-3 Средняя плотность у поверхности r (г/см3) 1,2*10-5 Для атмосферы Марса характерно низкое относительное содержание водяного пара, на уровне сотых и тысячных долей процента. Около 80% количества H2O сосредоточено в ...

Скачать
766403
1
0

... философии - особенно с методо­логических позиций материалистического понимания исто­рии и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» ло­гического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...

0 комментариев


Наверх