Міністерство охорони здоров’я України
Житомирський фармацевтичний коледж
ім. Г.С. Протасевича
Реферат
на тему:
“ Розкриття невизначеностей за правилом Лопіталя”
Роботу виконала
Студентка 211 групи
Піщук Олеся
Викладач:
Виговська В.Г.
Отриманий бал:
_____________
м. Житомир – 2006
План
І. Розкриття невизначеностей з використанням правила Лопіталя.
1) Правило Лопіталя.
а) Наслідок.
б) Приклад 1.
2) Розкриття невизначеностей виду: ∞-∞; 0∙∞; 1∞; 00; ∞0.
а) Приклад 2.
б) Приклад 3.
в) Приклад 4.
Список використаної літератури.
І. Розкриття невизначеностей з використанням правила Лопіталя.
Лопіталь де Гійом Франсуа (1661-2.02.1704 рр.). Французький математик, член Парижської АН, народився в Парижі, вивчав математику під керівництвом У. Бернуллі. Видав перший друкований підручник по диференціальному обчисленню – “Аналіз нескінченно малих” (1696р.). В підручнику є правило Лопіталя – правило знаходження межі дробу, чисельник і знаменник якого прямує до 0. Крім того, він створив курс аналітичної геометрії конічних перетинів. Йому також належить дослідження і розвиток за допомогою математичного аналізу декількох важких задач по геометрії і механіці, а також одне із рівнянь знаменитої задачі о браністохроні.
1. Правило Лопіталя.
Нехай виконані умови:
1. функції f(х) та g(х) визначені і диференційовані в колі точки х0;
2. частка цих функцій в точці х0 має невизначеність вигляду
або
;
3. існує .
Тоді існує і виконує рівність:
(1)
а) Наслідок.
Нехай:
1. Визначені в колі точки х0 функції f(х), g(х) та їх похідні до n-го порядку включно;
2. Частки ,
, …,
мають невизначеність вигляду
або
;
3. Існує , тоді
(2)
б) Приклад 1.
Знайти: .
Розв’язання:
Функції та
визначені з усіма своїми похідними в околі точки х=0.
Маємо:
.
2) Розкриття невизначеностей виду: ∞-∞; 0∙∞; 1∞; 00; ∞0.
Існують прийоми, що дозволяють зводити вказані невизначеності до невизначеностей вигляду або
, які можна розкривати з використанням правила Лопіталя.
1. Нехай і
, тоді
(3)
За умовою при
, тому
при
.
Якщо не прямує до 0 при
, то границя в правій частині (3) не існує, а тому і границя лівої частини (3) не існує.
Якщо при
, то вираз
має невизначеність
.
2. Нехай ,
, тоді
має невизначеність вигляду
при
.
В цьому випадку поступають так:
Під знаком останньої границі маємо невизначеність .
3. Нехай ,
при
. Тоді
має невизначеність вигляду
.
Позначимо . Шляхом логарифмування цієї рівності одержимо:
Отже, обчислення натурального логарифма границі зводиться до розкриття невизначеності вигляду
.
4. Невизначеності вигляду та
зводять до невизначеностей
або
шляхом логарифмування аналогічно до невизначеності вигляду
.
а) Приклад 2.
Знайти границю .
Розв’язання:
Функції та
диференційовані, а їх частка
має невизначеність вигляду
при
.
Використовуючи правило Лопіталя, одержимо:
.
б) Приклад 3.
Знайти границю .
Розв’язання:
В цьому випадку маємо невизначеність вигляду . Позначимо
і про логарифмуємо цю рівність. Одержимо:
, тобто невизначеність вигляду
. Використовуючи правило Лопіталя, одержимо:
.
Отже, .
в) Приклад 4.
Знайти границю .
В цьому випадку маємо невизначеність вигляду . Нехай
. Логарифмуючи цю рівність, одержимо:
.
Чотири рази застосували правило Лопіталя.
Отже, маємо:
Список використаної літератури:
1. Кривуца В.Г., Барковський В.В., Барковська Н.В. К.82. Вища математика. Практикум. Навчальний посібник.–Київ: Центр навчальної літератури, 2005.–536с.
2. Бородин А.И., Бугай А.С., Биографический словарь деятелей в области математики. Радянська школа 1979.
3. Алгебра и начала анализа: В 2-х ч./ Под. ред. Г.Н. Яковлева.–2-е изд. –К.: Вища шк., Головное изд-во, 1984.–Ч.2. 293с.
Похожие работы
бнику, решения задач необходимо ответить на вопросы для самопроверки, помещенные в конце темы. В соответствии с действующим учебным планом студенты-заочники изучают курс высшей математики в течение 1 и 2 семестра и выполняют в каждом семестре по две контрольные работы. Первая и вторая контрольные работы выполняются студентами в 1 семестре после изучения тем 1-2 и 3-4 соответственно. Третья и ...
0 комментариев