Сингулярные интегралы

19979
знаков
0
таблиц
3
изображения

Федеральное агентство по образованию

Государственное муниципальное образовательное учреждение

высшего профессионального образования

Вятский государственный гуманитарный университет

(ВятГГУ)

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

Сингулярные интегралы.

Выполнила:

студентка V курса

математического факультета

Сколова Ирина Юрьевна

____________________

Научный руководитель:

старший преподаватель кафедры математического анализа и МПМ

Гукасов Артур Константинович

____________________

Рецензент:

кандидат физико-математических наук, доцент

Подгорная Ирина Иссаковна

____________________

Допущена к защите в ГАК

Зав. кафедрой  ___________________ Крутихина М. В.

« » _______________

Декан факультета ___________________ Варанкина В. И.

« » _______________

Киров 2005

Оглавление

Введение………………………………………………………………………...с. 3

§1. Понятие сингулярного интеграла…………………………………………с. 6

§2. Представление функции сингулярным интегралом в заданной точке…с. 11

§3. Приложения в теории рядов Фурье.............................................................с. 18

§4. Сингулярный интеграл Пуассона................................................................с. 23

Литература……………………………………………………………………...с. 27


Введение

Цель работы – познакомиться с понятием сингулярного интеграла, рассмотреть представление функции сингулярным интегралом в заданной точке и приложения в теории рядов Фурье.

Основной вопрос теории сингулярных интегралов состоит в установлении связи предельных значений интеграла  при  со значением функции f (t) в точке x. Важным также является вопрос о представлении суммируемой функции сингулярным интегралом в точках, где эта функция служит производной своего неопределенного интеграла, или в точках Лебега. Теория сингулярных интегралов имеет многочисленные приложения. Например, вопрос о сходимости ряда Фурье разрешается с помощью сингулярного интеграла.

Во всем дальнейшем интеграл будем понимать в смысле интеграла Лебега. Напомним, что функция называется суммируемой, если существует конечный интеграл от этой функции.

В работе нам будут необходимы следующие определения и теоремы.

Определение. Если в точке x будет  и , то точка x называется точкой Лебега функции f (t).

Теорема (Н. Н. Лузин). Пусть f (x) измеримая и почти везде конечная функция, заданная на [a, b]. Каково бы ни было δ>0, существует такая непрерывная функция , что .

Если, в частности, , то и .

Теорему Н. Н. Лузина можно сформулировать и так: измеримая и почти везде конечная функция становится непрерывной, если пренебречь множеством сколь угодно малой меры.

Определение. Пусть дано измеримое множество E. Взяв произвольную точку x и число h>0, положим E(, h)=E∙[-h, +h]. Это тоже измеримое множество.

Предел отношения  при h→0 называется плотностью множества E в точке  и обозначается через .

Определение. Пусть функция f (x) задана на сегменте [a, b] и . Если существует такое измеримое множество E, лежащее на [a, b] и имеющее точку  точкой плотности, что f (x) вдоль E непрерывна в точке , то говорят, что f (x) аппроксимативно непрерывна в точке .

Определение. Измеримая функция f (x) называется функцией с суммируемым квадратом, или функцией, суммируемой с квадратом, если

.

Множество всех функций с суммируемым квадратом обозначается символом .

Определение. Пусть на сегменте [a, b] задана конечная функция f (x). Если всякому ε>0 отвечает такое δ>0, что для любой конечной системы взаимно не пересекающихся интервалов , для которой  оказывается

, (3)

то говорят, что функция f (x) абсолютно непрерывна.

Не изменяя смысла определения, можно условие (3) заменить более тяжелым условием .

Определение. Две функции f (x) и g(x), заданные на сегменте [a, b], называются взаимно ортогональными, если .

Определение. Функция f (x), заданная на [a, b], называется нормальной, если .

Определение. Система функций , , , …, заданных на сегменте [a, b], называется ортонормальной системой, если каждая функция системы нормирована, а любые две функции системы взаимно ортогональны.

Определение. Пусть  есть ортонормальная система и f (x) некоторая функция из . Числа  называются коэффициентами Фурье функции f (x) в системе .

Ряд  называется рядом Фурье функции f (x) в системе .


§1. Понятие сингулярного интеграла

Чтобы познакомиться с идеей, лежащей в основе понятия сингулярного интеграла, начнем с примера.

Рассмотрим функцию

. (1)

Если n и x фиксированы, а t меняется от 0 до 1, то эта функция есть непрерывная функция от t. Значит, для всякой суммируемой f (t) () можно образовать величину

. (2)

Докажем, что во всякой точке x (0<x<1), в которой функция f(t) непрерывна, будет

. (3)

Для этого прежде всего отметим, что при

. (4)

Поэтому, чтобы установить (3), достаточно показать, что при  стремится к нулю разность

.

Возьмем произвольное  и найдем такое , что при  будет . Считая, что , представим  в форме

.

Интеграл  оценивается следующим образом:

.

В интеграле  будет , поэтому

,

где  не зависит от n. Аналогично  и, следовательно, ,

так что при достаточно больших n будет , т. е.  стремится к 0 с возрастанием n, что и требовалось доказать.

Соотношение (3) обеспечивают следующие свойства функции : при больших значениях n те значения , которые отвечают сколько-нибудь заметно удаленным от x значениям t, очень малы, так что величина интеграла (2) определяется в основном значениями подынтегральной функции в непосредственной близости точки x. Но около точки x функция f (t) почти равна f (x) (т. к. она непрерывна при t=x). Значит, если n велико, то интеграл (2) мало изменяется при замене f (t) на f (x), т. е. он почти равен интегралу

и, в силу (4), почти равен f (x).

Функция , обладающая подобными свойствами, носит название ядра.

Определение. Пусть функция  (n=1, 2, …), заданная в квадрате (, ), суммируема по t при каждом фиксированном x. Она называется ядром, если  при условии, что .

Определение. Интеграл вида , где  есть ядро, называется сингулярным интегралом.

В теории сингулярных интегралов очень важен вопрос установления связи предельных значений интеграла  при  со значением функции

f (t) в точке x. Так как изменение значения функции f (t) в одной точке никак не отражается на величине , то необходимо потребовать, чтобы значение f (x) функции f (t) в точке x было как-то связано с ее значениями в близких точках. Простейшая форма такой связи есть непрерывность функции f (t) в точке t=x. Другими формами связи могут служить аппроксимативная непрерывность, требование, чтобы x была точкой Лебега функции f (t), и т. п.

Теорема 1 (А. Лебег). Пусть на [a, b] задана последовательность измеримых функций , , , … Если существует такая постоянная K, что при всех n и t будет

, (5)

и если при всяком c () будет

, (6)

то, какова бы ни была суммируемая на [a, b] функция f (t), справедливо равенство

. (7)

Доказательство. Если  есть сегмент, содержащийся в [a, b], то из (6) следует, что

. (8)

Рассмотрим непрерывную функцию f (t), и для наперед заданного  разложим [a, b] точками  на столь малые части, чтобы в каждой из них колебание f (t) было меньше, чем ε.

Тогда . (9)

Но , так что первая сумма из (9) не больше, чем Kε(b-a). Вторая же сумма (9), в силу (8), стремится к нулю с возрастанием n и для  окажется меньшей, чем ε. Для этих n будет

,

так что (7) доказано для непрерывной функции f(t).

Пусть f (t) измеримая ограниченная функция .

Возьмем ε>0 и, пользуясь теоремой Н. Н. Лузина, найдем такую непрерывную функцию g(t), что , .

Тогда .

Но .

Интеграл  по уже доказанному стремится к нулю и для достаточно больших n становится меньше ε. Значит, для этих n будет

,

что доказывает (7) для случая ограниченной измеримой функции.

Пусть f (t) произвольная суммируемая функция.

Возьмем ε>0 и, пользуясь абсолютной непрерывностью интеграла, найдем такое δ>0, чтобы для любого измеримого множества  с мерой me<δ было .

Сделав это, найдем такую измеримую ограниченную функцию g(t), чтобы было . Это возможно по

Теореме. Пусть на множестве Е задана измеримая, почти везде конечная функция f (x). Каково бы ни было ε>0, существует измеримая ограниченная функция g(x) такая, что .

Можно считать, что на множестве  функция g(t) равна нулю.

Тогда .

Но .

Интеграл же  при достаточно больших n будет меньше ε, и при этих n окажется , что и доказывает теорему.

Пример. Пусть . Тогда  и . Следовательно выполнены оба условия теоремы Лебега. Аналогично рассматривается случай . Таким образом доказана

Теорема 2 (Риман-Лебег). Для любой суммируемой на [a, b] функции

 f (t) будет .

В частности, коэффициенты Фурье ,  произвольной суммируемой функции стремятся к нулю при .

Если соотношение (7) имеет место для всякой суммируемой на [a, b] функции f (t), то мы будем говорить, что последовательность  слабо сходится к нулю.


§2. Представление функции сингулярным интегралом в заданной точке

Во всем дальнейшем будем считать, что ядро  при фиксированных n и x ограничено. Тогда сингулярный интеграл  имеет смысл при любой суммируемой функции f (t).

Теорема 1 (А. Лебег). Если при фиксированном x(a<x<b) и любом δ>0 ядро  слабо сходится к нулю в каждом из промежутков [a, x-δ],

[x+δ, b] и , где H(x) не зависит от n, то, какова бы ни была суммируемая функция f (t), непрерывная в точке x, справедливо равенство

.

Доказательство. Так как  есть ядро, то ,

и достаточно обнаружить, что

.

С этой целью, взяв ε>0, найдем такое δ>0, что при  будет

.

Это возможно в силу непрерывности функции f в точке x.

Тогда при любом n .

Но каждый из интегралов ,  при  стремится к нулю, т. к.  слабо сходится к нулю в каждом из промежутков [a, x-δ], [x+δ, b]. Поэтому для  каждый из них будет по абсолютной величине меньше ε/3.

И для этих n окажется , что и требовалось доказать.

Эта теорема относится к представлению суммируемой функции в точках непрерывности, но суммируемая функция, вообще говоря, не имеет ни одной точки непрерывности, что понижает интерес этой теоремы.

Больший интерес представляет вопрос о представлении суммируемой функции в тех точках, где эта функция служит производной своего неопределенного интеграла, или в точках Лебега, так как и те и другие точки заполняют почти весь сегмент задания функции. Перейдем к рассмотрению этого вопроса.

Лемма (И. П. Натансон). Пусть на сегменте [a, b] дана суммируемая функция f (t), обладающая тем свойством, что

. (1)

Какова бы ни была неотрицательная убывающая функция g(t), заданная и суммируемая на [a, b], интеграл

(2)

существует (может быть как несобственный при t=a) и справедливо неравенство

. (3)

В пояснение условий леммы заметим, что не исключается случай, когда . Если же , то функция g(t) ограничена, и интеграл (2) существует как обычный интеграл Лебега.

Переходя к доказательству леммы, заметим, что не ограничивая общности, можно принять, что g(b)=0. Действительно, если бы это не было так, то можно было ввести вместо g(t) функцию g*(t), определив ее равенствами

g(t), если ,

g*(t)=

 0, если t=b.

Доказав теорему для g*(t), мы затем смогли бы всюду заменить g*(t) на g(t), т. к. такая замена не отражается на величине интересующих нас интегралов. Итак, считаем, что g(b)=0.

Пусть a<α<b. На сегменте [α, b] функция g(t) ограничена, и интеграл

(4)

заведомо существует. Если положить , то интеграл (4) можно записать в форме интеграла Стилтьеса

,

откуда, после интегрирования по частям, находим

.

Но, в силу (1), мы имеем, что для любого h из интервала [0, t-a] выполняется неравенство  и следовательно

 , (5)

а так как g(t) убывает, то

. (6)

Значит . С другой стороны, функция –g(t) возрастает. Отсюда и из (5) следует, что

.

Преобразуем стоящий справа интеграл по формуле интегрирования по частям:

.

Отсюда, учитывая (6), следует, что

.

Сопоставляя все сказанное, получаем:

. (7)

Хотя это неравенство установлено при предположении, что g(b)=0, но оно останется верным и без этого предположения. Значит, можно заменить здесь предел b на β, где α<β<b. Но тогда, устремляя α и β к a, получим ,

чем доказывается существование интеграла (2). Если в (7) перейти к пределу при , то получим (3). Лемма доказана. (В оценке (3) множителя M уменьшить нельзя, так как при f (t)=1 в (3) достигается равенство.)

Теорема 2 (П. И. Романовский). Пусть ядро  положительно и обладает следующим свойством: при фиксированных n и x ядро , как функция одного лишь t, возрастает в сегменте [a, x] и убывает в сегменте

[x, b].

Тогда для любой суммируемой функции f (t), которая в точке x является производной своего неопределенного интеграла, будет .

Доказательство. Так как  есть ядро, то  и достаточно проверить, что .

Разбивая последний интеграл на два, распространенные на сегменте

[a, x] и [x, b], рассмотрим второй из них, так как первый изучается аналогично.

Возьмем ε>0 и найдем такое δ>0, что при  будет

,

что возможно, так как f (t) в точке t=x есть производная своего неопределенного интеграла. То есть  и .

Тогда по предыдущей лемме

.

Так как  есть ядро, то .

Величина, имеющая конечный предел, ограничена. Значит, существует постоянная K(x) такая, что .

Таким образом,

.

С другой стороны, если , то

.

Значит функции  на сегменте [x+δ, b] равномерно ограничены и выполнено условие (5) теоремы Лебега из §1. Но второе ее условие, т. е. условие (6), также выполнено для этих функций, т. к.  является ядром. Следовательно  на сегменте [x+δ, b] слабо сходится к нулю, и для достаточно больших n будет .

При этих n окажется

,

так что

.

Теорема доказана.

В качестве примера ее приложения рассмотрим интеграл Вейерштрасса .

Функция  есть ядро, т. к. при α<x<β

.

Эта функция положительна, и она возрастает при  и убывает при . Значит, для всякой  будет  в каждой точке x, где f (t) есть производная своего неопределенного интеграла.

Определение. Функция Ψ(t, x) называется горбатой мажорантой функции , если  и если Ψ(t, x) при фиксированном x возрастает на сегменте [a, x] и убывает на сегменте [x, b].

Теорема 3 (Д. К. Фаддеев). Если ядро  при каждом n имеет такую горбатую мажоранту , что

,

где K(x) зависит лишь от x, то для любой , имеющей точку t=x точкой Лебега, будет справедливо равенство

.

Доказательство. Достаточно доказать, что

.

Возьмем ε>0 и найдем такое δ>0, что при  будет

.

По лемме имеем

.

С другой стороны, в сегменте [x+δ, b] последовательность  слабо сходится к нулю, т. к. при  будет

.

Следовательно для достаточно больших n будет

.

При этих n окажется ,

так что . Теорема доказана.  


§3. Приложения в теории рядов Фурье

Во введении мы уже определили понятие ряда Фурье функции f (x) по любой ортонормальной системе . В частности, если речь идет о тригонометрической системе

, (1)

то рядом Фурье функции f (x) служит ряд

, (2)

где

, . (3)

Во введении предполагали, что . Это предположение обеспечило существование коэффициентов Фурье  функции f (x) в любой ортонормальной системе. Но функции системы (1) ограничены. Поэтому коэффициенты (3), а с ними и ряд (2), можно образовать для любой суммируемой функции.

Вопрос о сходимости ряда (2) приводится к исследованию некоторого сингулярного интеграла. Если , то, в силу (3), .

Выведем формулу для упрощения выражения в скобках. Для этого сложим равенства

(k=0, 1, …, n-1),

.

Это дает , откуда следует равенство

, (4)

Пользуясь этой формулой, придадим сумме  вид

. (5)

Этот интеграл есть сингулярный интеграл Дирихле.

Рассмотрим вопрос о суммировании ряда (2) по способу Чезаро. Этот способ состоит в отыскании предела среднего арифметического первых n сумм :

. (6)

В случае сходимости ряда (2) в точке x последовательность  сходится к сумме ряда, но эта последовательность может сходиться и тогда, когда ряд (2) расходится.

Для исследования  преобразуем ее с помощью формулы (5)

.

Но . (7)

Действительно, складывая равенства

(k=0, 1, …, n-1),

находим , откуда и следует (7).

С помощью (7) получаем . (8)

Интеграл (8) есть сингулярный интеграл Фейера. Покажем, что для него выполнены условия теоремы Фаддеева.

Для этого рассмотрим функцию f (t)=1. Вычисляя ее коэффициенты Фурье по формулам (3), получим  (k=1, 2, …).

Значит, для этой функции  (n=0, 1, 2, …), а следовательно и .

Но выражая  интегралом Фейера, получим, что

. (9)

Заметив это, рассмотрим точку . Пусть . Если , то , и, следовательно, , где A(x, α) не зависит от n.

Отсюда следует, что .

Аналогично убедимся, что интеграл стремится к нулю по промежутку  [β, π]. Сопоставляя это с (9), находим, что

,

так что функция  есть ядро.

Для этого ядра можно построить горбатую мажоранту. Заметим, что . Отсюда . Но .

Следовательно  и

. (10)

С другой стороны, когда , то , так что

. (11)

Так как , , то  может оказаться и больше, чем . Но это несущественно. Если положим , , то разность между интегралом Фейера (8) и интегралом

при возрастании n стремится к нулю (т. к., например, при  будет ), поэтому все рассуждения можно вести для интеграла .

Из (10) и (11) следует, что

.

Функция  есть горбатая мажоранта ядра Фейера.

Но , т. е. интегралы от мажоранты ограничены числом, не зависящим от n.

Итак, интеграл Фейера удовлетворяет условиям теоремы

Д. К. Фаддеева. Отсюда следует

Теорема 1 (Л. Фейер – А. Лебег). Почти везде на [-π, +π] будет

. (12)

Это соотношение выполняется во всех точках Лебега и тем более во всех точках непрерывности функции f (t), лежащих внутри [-π, +π].

Тригонометрическая система полна. Это означает, что всякая функция , у которой все коэффициенты Фурье (3) равны нулю, эквивалентна нулю. Избавимся от ограничения, что f (x) суммируема с квадратом. Справедлива следующая

Теорема 2. Если все коэффициенты Фурье (3) суммируемой функции

f (x) равны нулю, то f (x) эквивалентна нулю.

В самом деле, в этом случае  и, следовательно, f (x)=0 во всех точках, где имеет место (12), т. е. почти везде.

Теорема 1 позволяет делать некоторые высказывания и о поведении сумм . Для этого заметим, что

,

так что .

Отсюда .


§4. Сингулярный интеграл Пуассона

Пусть точка x есть точка d суммируемой функции f (t), если в этой точке производная неопределенного интеграла функции f (t) равна f (x) (причем ).

Интеграл  (0<r<1) есть сингулярный интеграл Пуассона. Если x (-π<x<π) есть точка d суммируемой функции f (t), то  (П. Фату).

1) Докажем, что  - ядро. Т. к. ядро является 2π-периодической функцией, то интеграл от этой функции, рассматриваемый на периоде, не зависит от x. Рассмотрим  при x=0.

.

Для вычисления интеграла используем универсальную тригонометрическую подстановку и получим

. (1)

Обозначим , тогда , а .

Выражение (1) будет равно

 при 0<r<1.

Получили, что  и - ядро.

2) Докажем, что .

, .

Тогда . Следовательно достаточно проверить, что .

Найдем такое, что на интервале [x-, x] ядро  возрастает, а на [x, x+] убывает. Это возможно, т. к. производная функции  меняет знак с плюса на минус при переходе через точку x: .

Возьмем ε>0 и найдем такое δ (0<δ<), что при  будет , что возможно, так как x есть точка d, т.е. f (t) в точке t=x есть производная своего неопределенного интеграла.

Тогда по лемме И. П. Натансона

, т. к.  есть ядро, и .

Таким образом, на интервале [x, x+δ] справедливо неравенство . На [x-δ, x] интеграл рассматривается аналогично в силу симметричности ядра на интервале [x-δ, x+δ] относительно точки x.

Рассмотрим  за пределами [x-δ, x+δ], т.е. на

[-π, x-δ,] и на [x+δ, π].

В этих случаях выполняются неравенства

, .

Тогда  и .

Следовательно , т. к. , и знаменатель дроби не равен нулю.

Аналогично .

То есть  на интервалах [-π,  x-δ,] и [x+δ, π].

При r, достаточно близких к 1, получим

  и .

При этих r окажется ,

так что  и .

Таким образом, доказано, что  (0<r<1) есть сингулярный интеграл.


Литература

1.   Натансон И. П. Теория функций вещественной переменной. – М.: Наука, 1974.

2.   Кашин Б. С., Саакян А. А. Ортогональные ряды. –

3.   Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. – М.: Наука, 1968.


Информация о работе «Сингулярные интегралы»
Раздел: Математика
Количество знаков с пробелами: 19979
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
81397
0
1

... , необходимо допустить физическую реальность бесконечно долгого калибровочного процесса самосжимания вещества в абсолютном пространстве СО Вейля. Избежание физической реализуемости гравитационной сингулярности у чрезвычайно массивного астрономического тела также возможно – за счет «размытия» ее квантовыми флуктуациями микронеоднородной структуры ПВК. Для этого необходимо и достаточно дополнить ...

Скачать
23150
0
0

... на пространственно-временные характеристики вещества. Принципиальная недостижимость, как нулевых, так и бесконечно больших значений этих характеристик является основанием для косвенной верификации физической нереализуемости гравитационной сингулярности. Для более детального изучения необычных свойств полых тел целесообразно в дальнейшем рассмотреть реальную жидкость, обладающую не жесткой СО а, ...

Скачать
37928
19
0

... приближений к π следовал аналогичным методам. Так, вычисление sn в алгоритме (c) основано на замечательном модулярном уравнении пятого порядка, открытом Рамануджаном. Число десятичных знаков π 100 000 000   10 000 000   1 000 000   100 000   ...

Скачать
41043
1
3

... (72) и (73) положить , то мы получим две интегральные формулы Пуассона для кругового кольца: , (82) , (83) где (74) и (75) – реальные и мнимые части компактной интегральной формулы Вилля-Шварца для кругового кольца [2],  - функция Вейерштрасса,  - угол наклона касательной к  в точке , ,  - периоды, с – произвольная постоянная,  (). Так как функция ) представляется быстро сходящимися ...

0 комментариев


Наверх