2. Використовувані кількості повинні бути біологічно нешкідливі і біосумісні з тканинами організму, а також не робити алергізуючої і токсичної дії;
3. Відповідність формотворних властивостей виготовленій лікарській формі. Допоміжні речовини повинні додавати лікарській формі необхідні властивості: структурно-механічні, физико-хімічні і, отже, забезпечувати біодоступність. Допоміжні речовини не повинні робити негативного впливу на органолептичні властивості лікарських препаратів: смак, запах, колір і ін.;
4. Відсутність хімічної чи фізико-хімічної взаємодії з лікарськими речовинами, пакувальними й закупорювальними засобами, а також матеріалом технологічного устаткування в процесі готування лікарських препаратів і при їхньому збереженні. Наслідком різних взаємодій може бути зниження ефективності, а в окремих випадках навіть прояв токсических властивостей лікарського препарату;
5. Відповідність у залежності від ступеня мікробіологічної чистоти виготовленого препарату (як кінцевого продукту) вимогам гранично припустимої мікробної контамінації; можливість піддаватися стерилізації, оскільки допоміжні речовини іноді є основним джерелом мікробного забруднення лікарських препаратів;
6. Економічна доступність і забезпечення вітчизняною промисловістю. Необхідно скорочувати список речовин, використовуваних у харчовій промисловості й інших галузях народного господарства.
2. Класифікація допоміжних речовин за хімічною структуроюНоменклатура допоміжних речовин, використовуваних у технології лікарських форм, дуже численна, тому з метою систематизації і полегшення подальшого їхнього вивчення і правильного підбора доцільна їхня класифікація.
В основі класифікації допоміжних речовин лежить ряд ознак: природа (у тому числі хімічна структура), вплив на технологічні характеристики і фармакокінетику лікарських форм.
За хімічною структурою допоміжні речовини є високомолекулярними сполуками (ВМС), що утворюють розчини різної в'язкості в залежності від концентрації. З цим зв'язане й основне їхнє використання в різних лікарських формах: рідких, в’язко-пластичних і твердих, тобто в розчинах, мазях, таблетках і ін. До ВМС відносяться природні і синтетичні речовини, що мають молекулярну масу не менш 10 000. Їх молекули (макромолекули) являють собою довгі нитки, що переплітаються між собою чи сконденсовані в клубки. Від будівлі молекул часто залежить специфіка виготовлення розчинів (в основному ВМС у технології лікарських форм використовується у виді розчинів).
Властивості ВМС і їхнього розчинів розглядаються в курсах органічної, фізичної і колоїдної хімії. При використанні ВМС у технології лікарських форм необхідно базуватися на раніше отриманих знаннях.
ВМС використовуються в технології практично всіх лікарських форм: як основи для мазей, суппозиториев, пігулок і ін.; як стабілізатори; як пролонгують компоненти; як речовини, що виправляють смак; крім того, як пакувальні й закупорювальні матеріали. Введення в технологію нових ВМС дозволило створити нові лікарські форми: багатошарові таблетки тривалої дії; спансулі (гранули, просочені розчинами ВМС); мікрокапсули; очні лікарські плівки; дитячі лікарські форми й ін.
Широке застосування ВМС у технології лікарських форм засновано також і на їх поверхово-активних властивостях. У залежності від хімічної структури розрізняють типи поверхнево-активних речовин (ПАР): катіонні, аніонні, неіоногенні. Усі типи в тім чи іншому ступені використовуються у фармацевтичній технології як гідрофілизатори, солюбілізатори, емульгатори, стабілізатори та ін. Це обумовлено властивістю їхніх молекул: дифільність, визначена величина гідрофільно-ліпофільного балансу (ГЛБ) і поверхнева активність.
Однак найбільше застосування останнім часом знаходять неіоногенні ПАР (НПАР), насамперед як з'єднання, що володіють найменшою токсичністю і не роблять дратівного дії на слизуваті оболонки і тканини, а також мають ряд інших переваг. Групу НПАР складають оксиетильні похідні ряду органічних соединений, моноефирі сахарози, гліцериди високомолекулярних жирних кислот, ефіри жирних кислот і багатоатомних спиртів і їхній оксиетильні похідні, що одержали назву спенов і ін.
Серед різних груп ПАР катіоноактивні ПАР – найбільш сильні бактерицидні засоби. Завдяки сполученню поверхнево-активних і бактерицидних властивостей вони перспективні для застосування у фармацевтичній технології. Це солі моночетвертичніх амонієвих сполук (етонія хлорид, тіонія хлорид).
Погіршення бактеріостатичних властивостей катіонні ПАР при добавці до них неіоногенних ПАР, видимо, зв'язано з їх спільним міцелоутворенням. Включення в лікарські форми представників цих 2 класів ПАР одночасно нераціонально, тому що вимагає підвищення концентрації четвертинних амонієвих сполук, що буде приводити до збільшення токсических властивостей лікарської форми.
Під дією ПАР (у силу дифільного будівлі молекул) різко міняються молекулярні властивості тієї поверхні, на якій вони адсорбируются. Позитивна адсорбція молекул веде до зниження поверхневого чи межфазного поверхневого натягу, З адсорбційною здатністю ПАР зв'язані їхні технологічні властивості. У розведених розчинах молекули ПАР піддаються максимальної гідратації, що сприяє утворенню щирого розчину. З підвищенням ГЛБ поліпшуються гідрофільні властивості ПАР, що супроводжується зростанням їхньої розчинності у воді. Неполярні групи молекул ПАР при підвищеній критичній концентрації міцелоутворення (ККМ) дегідратуються, з'єднуються один з одним під дією міжмолекулярної взаємодії й утворюють міцели. Збільшення довжини аліфатичного ланцюга сприяє міцелоутворенню (з цим зв'язана солюбілізація олеофільних сполук). Сильно розведені розчини неіоногенних ПАР подібні звичайним електролітам. Однак при підвищенні концентрації до ККМ різко змінюються багато їхніх фізико-хімічних властивостей: електропровідність, осмотичний тиск, поверхневий натяг, солюбілізуюча дія, в'язкість і ін.
Біофармацевтичні дослідження показали, що ПАР, змінюючи фізико-хімічні властивості лікарських форм, можуть робити також помітний вплив на терапевтичну ефективність лікарських препаратів. Низькі концентрації ПАР збільшують всмоктування сульфаніламідів, барбітуратів, деяких ефірів кислоти саліцилової, гідрокортизону, і, навпаки, високі концентрації багатьох ПАР знижують резорбцію лікарських речовин з розчинів. Залежність, що спостерігається, пояснюють зміною під дією ПАР проникності клітинних мембран і підвищенням розчинності лікарських речовин, міцелоутворенням, зниженням поверхневого натягу і коефіцієнта розподілу на границі розділу фаз.
Таким чином, використання ПАР у фармацевтичній технології дозволяє розробляти лікарські форми з необхідними фізико-хімічними властивостями, підвищувати агрегативную стійкість різних дисперсних систем і запобігати розкладання лікарських речовин, регулювати процеси їхнього вивільнення, розподіли й усмоктування при різних шляхах уведення.
Класифікація допоміжних речовин по природі і хімічній структурі доцільна для знання і подальшого використання їх фізичних, фізико-хімічних і фізико-механічних властивостей.
Розвиток синтетичної хімії, особливо хімії полімерів, в останні десятиліття створило можливість для спрямованого пошуку нових допоміжних речовин. До них відносять целюлозу і її похідні, полівініл, поліетиленгліколі, полівінілпіролідон, поліакриламід, силікони, різні емульгатори й ін.
3. Класифікація допоміжних речовин за природоюПо своїй природі допоміжні речовини можна розділити на природні, синтетичні і напівсинтетичні. Природні допоміжні речовини доцільно підрозділити на сполуки органічні і неорганічні.
Допоміжні речовини природного походження одержують шляхом переробки рослинної і тваринної сировини, сировини мікробного походження і мінералів. Природні допоміжні речовини мають перевага в порівнянні із синтетичними завдяки високій біологічній нешкідливості. Тому пошук природних допоміжних речовин, очевидно, буде продовжуватися і надалі. В даний час з використовуваних допоміжних речовин приблизно 1/3 приходиться на природні. Рослинні біополімери використовують в якості емульгаторів, стабілізаторів, пролонгаторів і для інших цілей при виробництві лікарських форм.
Природні допоміжні речовини мають істотний недолік – вони піддані високої мікробної контамінації, у зв'язку з чим розчини полісахаридів і білків швидко псуються. Крім того, у складі мікрофлори неорганічних сполук можуть виявлятися не тільки умовно-патогенні, але і патогенні мікроорганізми. У даному випадку використання прийнятних методів стерилізації і додавання антимікробних речовин (консервантів) значною мірою може знизити до гранично припустимих норм мікробну контамінацію природних допоміжних речовин.
Синтетичні і полісинтетичні допоміжні речовини знаходять широке застосування в технології лікарських форм. Цьому сприяє їхня приступність, тобто можливість синтезу речовин із заданими властивостями, більш ефективних і менш токсичних. При одержанні напівсинтетичних допоміжних речовин мається можливість удосконалювання властивостей природних речовин. Наприклад, похідні целюлози: натрієва сіль метилцелюлози розчинна у воді, а оксипропілцелюлоза не розчинна, тому вона використовується для покриття оболонками таблеток і драже з метою захисту лікарських речовин від кислого середовища шлункового соку і т.д. Похідні ланоліну (ацетильовані, оксиетильовані й ін.) на відміну від ланоліну по складу тотожні шкірному жиру людини, не викликають алергійних реакцій і через меншу в'язкість у порівнянні з ланоліном зручніше при виготовленні мазей.
Необхідно також враховувати, що синтетичні і напівсинтетичні допоміжні речовини можуть замінити ряд харчових продуктів.
Широке використання синтетичних і напівсинтетичних допоміжних речовин освітлено в технології кожної лікарської форми.
Природні допоміжні речовини
Крохмаль складають полісахариди (97,3–98,9%), білкові речовини (0,28–1,5%), клітковина (0,2–0,69%), мінеральні речовини (0,3 – 0,62%). Крохмаль складається з 2 фракцій – амілози й амілопектину. Молекула амілози являє собою довгу частку, що складається з гликозидніх залишків (до 700). Амілопектин має більш складна будову і складається з розгалужених молекул, що містять до 2000 залишків О-глюкопиранози. Чим коротше ланцюг, тим фракція краще розчиняється у воді. Так, амілоза розчиняється в теплій воді, а амілопектнн тільки набухає. Клейстеризація виражається в сильному набряканні крохмальних зерен, їхньому розриві й утворенні в’язкого гідрозолю.
Крохмаль використовують у твердих лікарських формах, у тому числі пігулках (у суміші з глюкозою і цукром), мазях. Як стабілізатор суспензій і емульсій застосовують 10% розчин.
Альгінати використовуються як допоміжні речовини. Особливе значення серед них здобувають кислота альгінова і її солі. Кислота альгінова являє собою ВМС, одержуване з морських водоростей (ламінарій). Вона завдяки своїм фізико-хімічним властивостям здатна утворювати в’язкі водяні розчини і пасти; володіє гомогенизирующими, що розпушують, стабілізуючими властивостями й ін. Це послужило підставою для широкого використання їх у складі різних фармацевтичних препаратів у якості що розпушують, емульгуючих, що пролонгують, плівкоутворювальних допоміжних речовин, а також для готування мазей і паст.
Кислота альгінова і її натрієва сіль практично нешкідливі. Вони є найбільш перспективними новими допоміжними речовинами, особливо для виробництва готових лікарських засобів.
Агароід являє собою ВМС різного ступеня полімеризації з малою реакційною здатністю. До складу полімеру входять глюкоза і галактоза, а також мінеральні елементи (кальцій, магній, сірка й ін.). Агароід, отриманий з водоростей, у 0,1% концентрації має стабілізуючими, розпушуючі і ковзаючими властивостями. У суміші з гліцерином у 1,5% концентрації може також бути використаний як мазева основа. Агароід володіє й коригуючим ефектом.
Пектин і пектинові речовини входять до складу клітинних стінок багатьох рослин. Це ВМС, що представляють за структурою полігалактуронову кислоту, частково етерифіковану метанолом.
Характерною властивістю розчинів пектину є висока желатинуюча здатність. Пектин становить інтерес для створення дитячих лікарських форм.
Мікробні полісахариди складають важливий клас природних полімерів, що володіють різноманітними властивостями (пролонгуючі, стабілізуючі гетерогенні системи і т. п.), завдяки яким вони можуть застосовуватися як основи для мазей, лініментів. У Санкт-Петербурзькому хіміко-фармацевтичному інституті розроблена технологія одержання ряду нових мікробних полісахаридів, що характеризуються апірогеністю, малою токсичністю, що визначає можливість використання їх як допоміжні речовини.
З групи цих речовин найбільше поширення одержав аубазидан – позаклітинний полісахарид, одержуваний при мікробіологічному синтезі за допомогою дріжджового гриба Aureobasidium puilulans. Завдяки своїй будові, розгалуженій структурі, конфігурації і конформації моносахаридів у молекулі полімеру (м.м. 6–9 млн) він має гарну розчинність у воді, дає в’язкі розчини, пластичні гелі, може взаємодіяти з іншими речовинами, що визначає його практичне застосування. Аубазидан (0,6% і вище) утворить гелі, що можуть використовуватися як основа для мазей, 1% – для плівок і губок. У концентрації 0,1–0,3% аубазидан використовується як пролонгатор очних крапель. У даному випадку позитивним моментом є стійкість розчинів при термічній стерилізації до 120 °С. Аубазидан також є ефективним стабілізатором і емульгатором.
Колаген є основним білком сполучної тканини, складається з макромолекул, що мають трьохспиральну структуру. Головним джерелом колагена служить шкіра великої рогатої худоби, у якій міститься його до 95%, колаген одержують шляхом луго-сольової обробки спилка.
Колаген застосовують для покриття ран у виді плівок з фурациліном, кислотою борної, олією облепиховою, метилурацилом і також у виді очних плівок з антибіотиками. Застосовуються губки гемостатические і з різними лікарськими речовинами. Колаген забезпечує оптимальну активність лікарських речовин, що зв'язано з глибоким проникненням і тривалим контактом лікарських речовин, включених у колагеновую основу, із тканинами організму.
Сукупність біологічних властивостей колагена (відсутність токсичності, повна резорбція й утилізація в організмі, стимуляція репаративних процесів) і його технологічні властивості створюють можливість широкого використання його в технології лікарських форм.
Желатин одержують при випарюванні обрізків шкіри. Основною амінокислотою желатину є глікокол (25,5%), міститься багато аланіна (8,7%), аргініну (8,2%), лейцину (7,1%), лізина (5,9%) і глютамінової кислоти, Желатин являє собою ВМС білкової природи. Він є активним емульгатором і стабілізатором, але через гелеобразуючі властивості дуже рідко застосовується в аптечній практиці. Емульсії виходять густими, щільними, вони швидко піддані мікробної контамінації.
Желатин завдяки високим гелеобразуючим властивостям використовують для виготовлення мазей, супозиторіїв, желатинових капсул і інших лікарських форм.
Желатоза являє собою продукт неповного гідролізу желатину. Не має здатність желатинуватися, але має високі емульгуючі властивості. Негативною властивістю є нестандартність речовини, тому в ряді випадків розчини желатози можуть мати високу в'язкість і пружність.
З неорганічних полімерів найбільше часто використовуються бентоніт, аеросил, тальк.
Бентоніт – природний неорганічний полімер. Зустрічаються у виді мінералів кристалічної структури з розмірами часток менш 0,01 мм. Мають складний склад і представляють в основному алюмогідросиликати.
У складі глинистих мінералів міститься 90% оксидів алюмінію, кремнію, магнію, заліза і води. Катіонами є К+, Na+, Са2+, Mg2+ тому глинисті мінерали можуть вступати в йонообмінні реакції. Це дозволяє регулювати їх фізико-хімічні властивості й одержувати системи з заданими властивостями, так називані модифіковані бентоніти. Бентоніти активно взаємодіють з водою. Внаслідок утворення гідратної оболонки частки глинистих мінералів здатні міцно утримувати воду і набухати в ній, значно збільшуючись в обсязі. Найбільшої набухаемостью володіють натрієві солі бентонітів (обсяг збільшується в 17 разів), кальцієві солі бентонітів збільшуються в обсязі тільки в 2,5 рази. Ще більше збільшуються в обсязі напівсинтетичні бентоніти – триетаноламінобентоніти (у 20–22 рази).
Бентоніти біологічно нешкідливі.
Індиферентність бентонітів до лікарських речовин, здатність до набрякання та гелеутворення дозволяють використовувати їх при виробництві багатьох лікарських форм: мазей, таблеток, порошків для внутрішнього і зовнішнього застосування, пігулок, гранул. Зі здатністю бентонітів підвищувати в'язкість (особливо натрієвих форм) зв'язана можливість використовувати їх у концентрації 3–5% для стабілізації суспензій. Бентоніти, особливо триетаноламінові форми, володіють і емульгуючими властивостями.
Бентоніти забезпечують лікарським препаратам м'якість, дисперсність, високі адсорбційні властивості, легку віддачу лікарських речовин і стабільність.
Аеросил, як і бентоніти, відноситься до неорганічних полімерів. Аеросил – колоїдний кремнію диоксид – являє собою дуже легкий, білий, високодисперсний, з великою питомою поверхнею порошок, що володіє вираженими адсорбційними властивостями. У воді аеросил у концентрації 1–4% утворить драглнподібні системи з гліцерином, олією вазеліновою.
Аеросил широко застосовують для стабілізації суспензій з різним дисперсійним середовищем. Це сприяє кращої фіксації суспензій на шкірі, підсилюючи терапевтичний ефект. Загущающую здатність аеросила використовують при одержанні гелів для мазевих основ. У порошках застосовують при виготовленні гігроскопічних сумішей і як диспергатор.
Адсорбційні властивості використовують з метою стабілізації сухих екстрактів (зменшується їхня гігроскопічність). Додавання аеросила до пігулок значно підвищує їхню стійкість до висихання в процесі збереження. Він підсилює в'язкість супозиторної маси, додає їй гомогенний характер, забезпечує рівномірний розподіл лікарських речовин, дозволяє вводити рідкі і гігроскопічні речовини.
Синтетичні і напівсинтетичні допоміжні речовини
Особливе місце серед ВМС, використовуваних у технології лікарських форм, займають ефіри целюлози. Фізіологічна нешкідливість, коштовні фізико-хімічні і технологічні властивості цих допоміжних матеріалів дозволяють застосовувати їх у якості стабілізуючих, пролонгуючих, основоутворюючих засобів, а також для підвищення якості багатьох лікарських форм.
У технології лікарських форм використовують прості і складні ефіри целюлози. Вони являють собою продукти заміщення водневих атомів гідроксильних груп целюлози на спиртові залишки – алкіди (при одержанні простих ефірів) чи кислотні залишки – ацили (при одержанні складних ефірів).
Метилцелюлозу розчинну зручніше використовувати в технологічній практиці.
Відносна м.м. метилцелюлози (МЦ) складає 150–300 тис. МЦ розчинна являє собою простий ефір целюлози і метанолу. Може мати вид злегка жовтуватого порошку, гранульованого чи волокнистого продукту без запаху і смаку. МЦ розчинна в холодній воді, гліцерині, нерозчинна в гарячій воді. Для виготовлення водяних розчинів МЦ заливають водою, нагрітої до температури 80–90 СС, у кількості 1/3 від необхідного обсягу одержуваного розчину. Після зниженні температури до кімнатної додають іншу холодну воду. Охолоджені розчини прозорі. При нагріванні до температури вище 50 °С водяні розчини МЦ коагулюють, але при охолодженні гель знову переходить у розчин. Розчини володіють вираженими поверхнево-активними властивостями. Концентровані розчини МЦ псевдопластичні, майже не мають тіксотропних властивостей. При висиханні розчини утворять прозору міцну плівку.
Водяні розчини МЦ володіють високої сорбційною, емульгуючою і змочувальною здатністю. У технології застосовують 0,5–1% водні розчини в якості загущувачів і стабілізаторів, для гідрофілізації гідрофобних основ мазей і лініментів; у якості емульгатора і стабілізатора при виготовленні суспензій і емульсій, а також пролонгуючих компонентів для очних крапель. 3–8% водні розчини, іноді з додаванням гліцерину, утворять гліцерогелі, що застосовують як невисихаючу основу для мазей.
Натрій-карбоксиметилцелюлоза є іншим похідним метилцелюлози. Вона являє собою натрієву сіль простого ефіру целюлози і гліколевої кислоти.
Nа-КМЦ (м.м. 75 000–85 000) має вид білого чи злегка жовтуватого порошку, або волокнистого продукту без запаху, розчинна в холодній і гарячій воді. Nа-КМЦ у різних концентраціях (0,5–1–2%) застосовують у якості пролонгатора дії лікарських речовин в очних краплях і ін'єкційних розчинах, стабілізаторів, формоутворювача в емульсіях і мазях (4–6%). Гели Nа-КМЦ на відміну від гелів МЦ сумісні з багатьма консервантами.
Крім МЦ і Nа-КМЦ, у технології готових лікарських засобів використовують оксипропілметилцелюлозу й ацетилцелюлозу.
Полівінол – найбільш розповсюджений синтетичний водорозчинний полімер вінілацетату. Полівінол (полівініловий спирт – ПВС) відноситься до синтетичних полімерів алифатического ряду.
По величині молекулярної маси ПВС поділяють на чотири групи: олігомери (4000–10 000); низько молекулярні (10 000–45 000); середньомолекулярні (45 000 – 150 000); високомолекулярні (150 000–500 000).
ПВС являє собою порошок білого чи злегка жовтуватого кольору, розчинний у воді при нагріванні. Володіє високою реакційною здатністю завдяки наявності гідроксильних груп.
У технології лікарських форм 1,4–2,5% розчини ПВС застосовують у якості емульгатора, загущувача і стабілізатора суспензій; 10% розчини – мазевих основ і очних плівок.
Полівінілпиролідон являє собою полімер N-вінілпіролідона.
ПВП – безбарвний і прозорий, гігроскопічний полімер (м.м. 10 000–100 000). Найбільше широко застосовується ПВП, що має молекулярну масу 12 600–35 000. Він розчинний у воді, спиртах, гліцерині, легко утворює комплекси з лікарськими сполуками (вітамінами, антибіотиками).
ПВП використовується в медицині і фармацевтичній технології як стабілізатор емульсій і суспензій, прологуючий компонент, наповнювач для таблеток і драже. Він також входить до складу плазмозамінювачів, аерозолей, очних лікарських плівок. Гели на основі ПВП використовують для готування мазей, у тому числі призначених для нанесення на слизуваті оболонки.
Поліакриламід. В останні роки одержали дуже широке поширення, поліакриламід (ПАА) і його похідні.
ПАА – полімер білого кольору, без запаху, розчинний у воді, гліцерині. Водні розчини є типовими псевдопластичними рідинами. Отримано і біорозчинний полімер, він широко використовується для лікарських біорозчинних очних плівок, що забезпечують максимальний час контакту з поверхнею коньюнктиви. 1% розчини ПАА використовують для пролонгування дії очних крапель. Успішно застосовують і інші види лікарських плівок – тринітролонг. Водяні розчини ПАА сумісні з багатьма електролітами, ПАВ і консервантами.
ПАА перспективний для створення нових лікарських форм.
Поліетиленоксиди являють собою полімери етиленоксида.
Поліетиленоксиди (ПЕО) чи поліетиленгліколи (ПЕГ) одержують шляхом полімеризації етиленоксида в присутності води і калію гідроксида.
Консистенція ПЕО залежить від ступеня полімеризації. У нашій країні випускають ПЕО з різним ступенем полімеризації (м.м. 400–4000). ПЕО-400 являє собою грузла прозора безбарвну, рідина, ПЕО-1500 – воски (температура плавлення 35–41 °С), ПЕО-4000 – тверда речовина білого кольору з температурою плавлення 53–61 °С.
Характерною рисою ПЕО є гарна розчинність у воді, етанолі. Вони не змішуються з вуглеводнями і жирами, утворюючи з ними емульсію; малочутливі до зміни рН, стабільні при збереженні.
ПЕО мають украй малу токсичність, що обумовлює дуже широке застосування у фармацевтичній практиці – у технології мазей, емульсій, суспензій, супозиторіїв і інших лікарських форм. Основи для мазей найчастіше представляють собой композицію рідких і твердих ПЕО, що мають в’язко-пластичну консистенцію. Однак вони роблять дію, що висушує, на слизуваті оболонки.
ПЕО зручно використовувати також для супозиторних основ.
Похідними сополімерів етиленоксида є спени і твіни.
Спени – ефіри сорбітана з вищими жирними кислотами.
Найбільше часто застосовуються спени – ефіри вищих жирних кислот: спен-20 – ефір лауринової кислоти; спен-40 – ефір пальмітинової кислоти; спен-60 – ефір стеаринової кислоти; спен-80 – ефір олеиновой кислоти.
Спени є ліпофільними сполуками. Вони розчинні в оліях, а також етанолі, утворюють емульсії типу вода/олія. У зв'язку з неіоногенним характером сумісні з багатьма лікарськими речовинами.
Твіни являють собою моноефири поліоксиетильованого сорбітана (спена) і вищих жирних кислот. Твіни одержують шляхом обробки спенов етилепоксидом у присутності натрію гідроксида (каталізатор). Етерифікація відбувається по місцю вільних гидроксидов. Твіни добре розчиняються у воді й органічних розчинниках. До медичного застосування дозволений твін-80, що представляє собою моноефир олеїнової кислоти.
Твін-80 є неіоногенним ПАР. Він добре розчинний у воді, оліях рослинних і мінеральних. Служить гарним емульгатором з високим значенням ГЛБ (15–16), тому застосовується і як солюбілізатор. Як емульгатор і стабілізатор твін-80 застосовують для стабілізації емульсій і суспензій, у тому числі і для ін'єкційного введення.
Жироцукри – неповні складні ефіри сахарози з вищими жирними кислотами (стеаринова, пальмітинова, лауринова й ін.)
Жиросахара – новий клас ПАР твердої, в'язкої і рідкої консистенції з дуже цінними властивостями. Вони не мають запаху і смаку, в організмі розпадаються на жирні кислоти, фруктозу і сахарозу, індиферентні для шкіри. Застосовуються в якості солюбілізаторів, емульгаторів (при виготовленні емульсій для парентерального введення), стабілізаторів,
Силікони являють собою кремнійорганічні полімери. За структурою підрозділяються на лінійні, сітчасті і циклічні. Серед кремнійорганічних полімерів найбільший інтерес з фармацевтичної точки зору представляють поліорганосилоксани з лінійними ланцюгами молекул, що випускаються у виді олігомеров (кремний-органічні рідини). Основу силіконів складає силоксановий кістяк – ланцюг атомів кремнію, що чергуються з киснем. Вільні зв'язки кремнію заповнені органічними радикалами (метильним, етильним, фенільним і ін.). Найбільш широке застосування одержали диетилполіорганосилоксанові рідини;
Полімер зі ступенем полімеризації 5 одержав назву есилон-4, а полімер зі ступенем конденсації 15 – есилон-5. Вони являють собою безбарвні, прозорі, в’язкі, гігроскопічні рідини без запаху і смаку.
Силікони володіють багатьма цінними властивостями, що обумовлюють можливість їхнього застосування. У зв'язку з відсутністю хімічно активних груп вони характеризуються високою хімічною інертністю: не окисляються, не піддаються дії агресивних середовищ, мають гідрофобні властивості, термостійкі, не змішуються з водою, етанолом, гліцерином. Силікони сумісні з компонентами мазей і лініментів (вазеліном, парафіном, оліями рослинними). У есилонах добре розчиняються полярні і семіполярні речовини (ментол, камфора, фенол і ін.).
Біологічна інертність силіконів свідчить про їхню перспективність для застосування як носіїв у лікарських препаратах при різних шляхах уведення. Вони також використовуються для силіконування скляної тари з метою підвищення хімічної і термічної стійкості, зниження гігроскопічності сухих екстрактів. Силіконові рідини використовують для захисту шкіри як креми, лосьони і мазі. Гарна переносимость шкірою (не порушують тканинне дихання, теплообмін), тканинами і слизовими оболонками, тривала стабільність і сумісність з багатьма лікарськими речовинами послужила підставою для їхнього використання як розчинників чи носіїв у лікарських формах для внутрішньом'язового і нашкірного застосування.
4. Класифікація допоміжних речовин за функціональним призначеннямДопоміжні речовини в залежності від впливу на фізико-хімічні характеристики і фармакокінетику лікарських форм можна розділити на наступні групи: формотворні, стабілізуючі (стабілізатори), що пролонгують (пролонгаторі), солюбілізуючі (солюбілізатори), що коригують (коригенти).
Формотворні речовини
Ця група допоміжних речовин використовується як дисперсійні середовища (вода чи неводні середовища) у технології рідких лікарських форм, наповнювачів для твердих лікарських форм (порошки, пігулки, таблетки й ін.), основ для мазей, основ для супозиторіїв. Формотворні речовини дають можливість виготовити лікарські форми виходячи з агрегатного стану, створювати необхідну масу чи об’єм, додавати визначену геометричну форму і забезпечувати інші фізичні вимоги, запропоновані до лікарських форм. Застосовується дуже велика група речовин природного і синтетичного походження.
Серед дисперсійних середовищ для готування рідких лікарських форм найбільше часто використовується вода (дистильована чи для ін'єкцій), як неводні розчинники – етанол, гліцерин, олії жирні, вазелінова олія, поліетиленоксид (частіше з м.м. – 400), пропіленгліколь, етилолеат, силіконові рідини (есилони), бензил-бензоат і ін. Для виготовлення твердих лікарських форм як допоміжні речовини (нерідко їх називають наповнювачі) використовують цукор молочний чи білий, крохмаль, тальк, порошки лікарських рослин і їхні екстракти (сухі) і багато інших компонентів у залежності від виду лікарської форми. У технології мазей як основи найбільше часто застосовують в’язкопластичні речовини і їхні сполучення: ліпофільні (вазелін, жири, силіконові основи й ін.); гідрофільні (поліетиленоксидні, крахмально-гліцеринові, розчини МЦ і її похідних і ін.); дифільні (найчастіше емульсійні основи). Для виготовлення супозиторіїв використовують речовини і їх сполучення які нерозчинні у воді (олія какао, бутирол, олії гідрогенізовані), так і розчинні (желатин, поліетиленоксиди й ін.).
Стабілізуючі речовини (стабілізатори)
Стабільність – властивість лікарських засобів зберігати фізико-хімічні і мікробіологічні властивості протягом визначеного часу з моменту випуску. Стабілізацію лікарських препаратів у даний час варто розглядати як дуже актуальну комплексну проблему в цілому: стійкість лікарських форм, що представляють собою дисперсні системи (розчини, суспензії, емульсії), стійкість лікарських речовин (хімічних сполук різної природи) і стійкість лікарських препаратів до мікробної контамінації.
Стабілізатори фізико-хімічних (дисперсних) систем в основному мають велике значення для гетерогенних (неоднорідних) систем (суспензій і емульсій), досить часто використовуваних у медичній практиці завдяки коштовним фармакокінетичним, терапевтичним властивостям: можливість виготовлення і використання лікарських препаратів із важкорозчинних чи практично нерозчинних лікарських засобів; продовження дії лікарських речовин; забезпечення різних способів введення, у тому числі й ін'єкційного; зниження подразнюючих властивостей і неприємного смаку; точність дозування цих лікарських форм. Так, стабільні суспензії барію сульфату, широко використовувані при дослідженнях, дозволяють вчасно діагностувати зміни слизистої оболонки шлунково-кишкового тракту; емульсії олії вазелінової, необхідні для хворих з атонією кишечнику, для стимуляції його функції. Отримано емульсії і для внутрішньовенного введення з деякими жиророзчинними цитостатиками і багато інших ефективних лікарських препаратів.
До стабілізаторів лікарських форм – гетерогенних дисперсних систем – можна віднести похідні МЦ, пектини, альгинати, бентонітові глини, аеросил, твіни і спени і ряд інших речовин. Нерідко з метою зниження кількості цих речовин і підвищення їхньої активності використовують різне сполучення стабілізаторів.
Стабілізатори хімічних речовин використовуються в процесі виготовлення і тривалого зберігання лікарських препаратів. Цей вид стабілізації має велике значення для лікарських форм, що піддаються різним видам стерилізації, особливо термічній. У даному випадку використовується хімічний метод стабілізації, що особливо необхідний для рідких лікарських форм. Застосування стабілізаторів засноване на пригніченні процесів гідролітичного чи окислювально-відновного розкладання лікарських речовин. Для запобігання гідролітичних процесів використовують кислоти (хлористоводневу й ін.) чи лужні компоненти (натрію гідроксид, натрію гідрокарбонат) у залежності від властивостей розчину лікарської речовини. Іноді найбільше ефективно в цьому випадку використовувати буферні системи: боратно-ацетатні, боратні, фосфатні й ін. Одним з основних способів підвищення стійкості лікарських речовин є застосування ПАР і ВМС. При цьому стабілізуюче дія здійснюється шляхом міцелоутворення і зв'язування молекул лікарських речовин з міцелами. Наприклад, аніоногенні ПАР зменшують швидкість гідролізу дикаіїна в 10 разів, новокаїну – у 4 рази.
У технології лікарських форм використовують додавання стабілізаторів, що гальмують окислювально-відновні процеси в розчинах лікарських речовин і ряду допоміжних компонентів (мазевих і суппозиторніх основ і ін.), тому що окислювання фізіологічно активних речовин відбувається досить часто. Особливо чуттєві до окислювання ненасичені жири й олії, сполуки з альдегідними і фенольними групами, а також полімерні пакувальні матеріали. Реакції окислювання можуть бути інгібовані шляхом додавання невеликих кількостей допоміжних речовин, називаних антиоксидантами (протиокислювачами). Відома безліч антиоксидантів (АО) як природного, так і синтетичного походження. Механізми процесів окислювання і гальмування за допомогою АО у даний час гарне вивчені. АО, як правило, у хімічному відношенні є дуже реакційноздатними речовинами і вступають у взаємодію з активними інгредієнтами, впливаючи на стійкість і ефективність лікарських препаратів. У якості АО запропоновані похідні фенолу, ароматичні аміни, похідні сірки (натрію сульфіт і метабісульфіт, ронголіт, тіосечовина й ін.), а також трилон Б, кислота аскорбінова, токофероли і багато інших сполук.
По механізму дії АО поділяють на 3 групи. До першої групи відносяться власне АО, що інгибують процес окислювання, реагуючи з вільними радикалами первинних продуктів окислювання, чим припиняють розвиток ланцюгової реакції (бутилоксианізол, бутилокситолуол, нордигідрогваяретова кислота, токофероли). Друга група представлена що відновлюють АО, що мають більш низький окислювально-відновний потенціал, чим соединения, що окисляються, що знаходяться в системі. Окислюванню останніх передує окислювання восстановителя киснем, що знаходиться в системі, (похідні кислоти сірчистої, органічні сполуки сірки, кислота аскорбінова й ін.). Третя група – синергисті АО, власна антиокисна дія яких незначно, однак вони сприяють посиленню дії інших АО, наприклад, утворити комплекси з іонами металів, каталізуючих окислювання, чи регенеруючи АО (кислоти лимонна і винна, ЕДТА й ін.).
У технології лікарських форм в останні роки досить часто використовують комплекс стабілізаторів, що володіють синергічним ефектом.
Протимікробні стабілізатори (консерванти) використовують для запобігання лікарських препаратів від мікробного впливу. Консервування не виключає дотримання санітарних правил виробничого процесу, що повинні сприяти максимальному зниженню мікробної контамінації лікарських препаратів. Консерванти є інгібіторами росту тих мікроорганізмів, що попадають у лікарські препарати в процесі їхнього багаторазового використання. Вони дозволяють зберегти стерильність лікарських чи препаратів гранично припустиме число непатогенних мікроорганізмів у нестерильних лікарських препаратах. До консервантів пред'являються ті ж вимоги, що і до інших допоміжних речовин, але звертається увага на наявність широкого спектра їхньої антимікробної дії.
У ДФ XI як антисептичні речовини для ін'єкційних розчинів, інших лікарських форм, сироваток і вакцин включений: хлорбутанол-гідрат (0,05–0,5%); фенол (0,25–0,3%); хлороформ (0,5%); мертіолат (0,01%); ніпагин (0,1%); ніпазол; кислота сорбінова (0,1–0,2%) і інші речовини, дозволені до медичного застосування. У ДФ XI на відміну від попередніх фармакопей приведені консерванти, призначені для всіх неін'єкційних лікарських форм.
Металорганічні сполуки ртуті володіють високою антимікробною активністю й у малих дозах нетоксичні для людини. Найбільше часто використовують мертіолат, натрієву сіль етилтіосаліцилата.
Мертіолат являє собою порошок кремового кольору, стійкий на повітрі, розкладається на світлі, розчиняється в 1 частині води і 8 частинах етанола. Мертіолат застосовується для консервування очних крапель (0,005%), очних мазей (0,02%), ін'єкційних розчинів (0,01%), мазей (0,1%).
Мертіолат є ефективним консервантом, однак нерідко викликає алергійні реакції при тривалому застосуванні.
Органічні сполуки численні. До цієї групи протимікробних стабілізаторів (консервантів) відносяться спирти, феноли, органічні кислоти, складні ефіри парагідроксибензойної кислоти, солі четвертинних амонієвих сполук, ефірні олії.
Зі спиртів найбільше часто використовуються етиловий, бензиловий, хлорбутанолгідрат.
Спирт етиловий – етанол, будучи екстрагентом при одержанні настойок, екстрактів і концентратів з лікарської рослинної сировини, у той же час виконує роль консерванту. Для консервування деяких емульсій застосовують етанол у кількості 10–12% від водяної фази, у галеновіх і новогаленовіх препаратах – до 20%. Однак найкращими антисептичними властивостями володіє 70% етанол, тому, присутствуя в галеновіх препаратах у кількості до 20%, вона робить слабкий консервуючий ефект.
Більшою активністю в порівнянні з етанолом володіє спирт бензиловий;
Спирт бензиловий являє собою рідина з приємним ароматичним запахом і пекучим смаком. Розчиняється в 25 частинах води, 1 частини 50% етанола. Спирт бензиловий у 0,9% концентрації застосовують для консервування очних крапель (містящих кортизону ацетат), гідрофобних, гідрофільних і емульсійних мазевих основ; у кількості 2% – для консервування 15% розчину нембутала для ін'єкцій, а також препаратів радіоактивних ізотопів і протипухлинних речовин.
Ефективним консервантом є хлорбутанолгідрат.
Хлорбутанолгідрат являє собою безбарвні кристали з запахом камфори. Він дуже мало розчинний у воді (1:250), легко розчинний у 90% етанолі, оліях жирних і вазеліновому, гліцерині. Хлорбутанолгідрат у 0,5% концентрації застосовують для консервування екстракційних препаратів, соків свіжих рослин, органопрепаратів, за рубежем його використовують для консервування очних крапель, емульсій, крапля для носа. Хлорбутанолгідрат сполучимо з багатьма лікарськими речовинами.
Іншу групу консервантів – органічних сполук представляють феноли (фенол, хлоркрезол). Найбільш старим з них є фенол. 0,25–0,5% розчини фенолу ефективні для препаратів інсуліну, вакцин і сироваток. Однак при місцевому застосуванні фенол має дратівну дію. Він нерідко сприяє алергійним проявам. Тому фенол не застосовується для консервування мазей, очних крапель, супозиторіїв.
Найбільше часто з похідних фенолу використовується як консервант хлоркрезол
Хлоркрезол являє собою безбарвні кристали з характерним запахом. Розчинний у 250 частинах води (краще в гарячій), етанолі, оліях жирних. Хлоркрезол у 10–13 разів активніше фенолу у відношенні бактерій і грибів, у той же час він менш токсичний. Розчини хлоркрезола застосовуються для консервування очних крапель (0,05%), ін'єкційних розчинів (0,1%), мазей (0,1–0,2%).
Широке поширення у фармацевтичній технології як консерванти одержали органічні кислоти: бензойна і сорбиновая. Кислота бензойна являє собою кристалічну речовину білого кольору зі слабким характерним запахом. 1,0 г кислоти розчинні у 350 мл води чи 3 мл етанола, чи 8 мл хлороформу. Кислота бензойна широко використовується як консервант. Звичайно застосовується у виді натрієвої солі, добре розчинної у воді (1,0 г у 1 мл води). Кислота бензойна і її солі роблять сильну дію на дріжджові гриби, особливо в кислому середовищі. Кислоту бензойну і її натрієву сіль використовують для консервування сиропів цукрового і лікарського, емульсії олії вазелінової, суспензій з антибіотиками й іншими препаратами, призначених для внутрішнього застосування.
Найбільш ефективним і біологічно нешкідливим консервантом є кислота сорбінова.
Кислота сорбінова являє собою білий дрібнокристалічний порошок зі слабким запахом і слабокислім смаком. Вона в концентрації до 0,15% розчинна у воді, до 0,2% – в оліях жирних і мінеральних, добре розчинна в етанолі. Крім кислоти сорбиновой, як консерванти застосовують її калієву сіль.
В даний час кислоту сорбінову синтезують найчастіше шляхом взаємодії кротонового альдегіду з малоновой кислотою в присутності піридину.
Кислота сорбінова дозволена в багатьох країнах світу для консервування харчових продуктів, тому що менш токсична, чим звичайно застосовувані кислоти-консерванти, і нешкідлива для людини навіть у великих кількостях. Вона сприяє підвищенню імунобіологічної активності організму. Подібно іншим кислотам-консервантам, кислота сорбінова найбільш ефективна при значеннях рН 3,0–4,0. Вона виявляє дуже сильну фунгицидну активність, гальмує ріст кишкової палички, золотавого стафілокока, вульгарного протея й ін.
Великий інтерес представляє використання кислоти сорбінової для консервування галеновіх препаратів (цукровий і лікувальний сиропи, екстракти й ін.). Не рекомендують для консервування концентрованих розчинів натрію броміду, кальцію хлориду, мікстури Павлова. Розчини кислоти сорбінової (0,2%) є ефективними консервантами мазей, особливо емульсійного типу, і лініментів промислового виробництва.
Складні ефіри парагідроксибензойної кислоти – парабені (ніпагин, ніпазол) знайшли широке застосування в харчовій, парфумерній і фармацевтичній промисловості багатьох країн. Вони включені в багато фармакопей і, зокрема, у ДФ XI. Найбільше широко використовують метиловий і пропіловий ефіри.
Ніпагин являє собою метиловий ефір парагідроксибензойной кислоти.
Ефіри парагідроксибензойної кислоти являють собою білі кристалічні, без запаху і смаку порошки, погано розчинні у воді, розчинні в оліях і дуже добре – в органічних розчинниках. Кращою розчинністю володіє ніпагин, тому він частіше застосовується у водяних розчинах, ніпазол однаково розчинний у воді й оліях. По антисептичних властивостях парабени в значній мірі перевершують фенол, наприклад пропиловій ефір – 17 разів. Більш сильна дія, що консервує, досягається при сполученні 0,025 г. пропилового і 0,075 г. метилового ефірів (1:3). Особливо ефективна суміш інгредієнтів у цьому співвідношенні для консервування мазей і емульсій, якщо неї взяти 0,2% від маси мазі чи емульсії.
Парабени рекомендують для консервування очних крапель. Мала токсичність парабенів дозволяє використовувати їх для лікарських препаратів, призначених для внутрішнього застосування, галенових препаратів (сиропу цукрового), настоїв і відварів, концентрованих розчинів, суспензій рентгеноконтрастних, гормональних і протитуберкульозних засобів, антибіотиків, пероральних емульсій; їхній також уводять до складу желатинових капсул. Широко використовуються парабени для консервування мазей і їхніх основ.
Представниками солей четвертинних амонієвих сполук є бензалкония хлорид, диметилдодецилбензиламонія хлорид. Як антибактеріальні речовини значне поширення одержали солі четвертинних амонієвих сполук, що відносяться до групи синтетичних катіоноактивних ПАР, основним з який є бензалконія хлорид.
Для консервування лікарських препаратів найбільш широке застосування знайшов бензалкония хлорид – суміш хлоридів алкілметилбензиламонія. Установлено, що антибактеріальна активність бензалкония хлориду виявляється при змісті в радикалі від 8 до 16 атомів вуглецю.
Бензалконія хлорид являє собою кристалічну речовину білого кольору, дуже добре розчинне у воді. Водяні розчини його безбарвні, стійкі до змін температури, рН середовища. Він зберігає активність у присутності великої групи лікарських речовин. При розведенні 1:50000 бензалконія хлорид ефективний у відношенні багатьох грамнегативних, грампозитивних бактерій і грибів і не має токсичність. При використанні в мазях не робить подразнюючої й алергізуючої дії. Бензалконія хлорид у концентрації 1:10000 застосовують у даний час майже у всіх закордонних країнах переважно для консервування очних лікарських форм, крапля для носа, де вимагаються відсутність подразнюючої дії і швидкий бактерицидний ефект.
Іншою сполукою цієї групи, що представляє значний інтерес, є вітчизняна речовина, синтезоване на кафедрі органічної хімії I ММІ ім. І. М. Сєченова – диметилдодецилбензиламонія хлорид (ДМДБАХ).
Це – жовтувато-білий порошок з ароматичним запахом, дуже добре розчинний у воді, етанолі. ДМДБАХ на відміну від закордонного бензалконія хлориду являє собою індивідуальна речовина.
Вивчення вітчизняного консерванту, дозволило установити перевагу цієї речовини в порівнянні з закордонним бензалконія хлоридом (БАХ). ДМДБАХ робить швидка антимікробна дія в 0,01% концентрації. Загибель мікроорганізмів настає через 15–60 хв, що має велике значення для консервування лікарських препаратів, застосовуваних багаторазово протягом доби. У порівнянні з закордонним БАХом ДМДБАХ має сильними спороцидними властивості, він активніше у відношенні синьогнійної палички, що звичайно є представником супутньої флори при очних захворюваннях, нерідко ускладнюючи плин останніх. Антимікробна активність ДМДБАХ не знижується в присутності багатьох лікарських речовин, вона сумісний з компонентами, що пролонгують, (МЦ, полівинолом і ін.) і мазевими основами (вазеліном, консистентною емульсією, гідрофільними й очними основами).
Ефірні олії використовують як консерванти для лікарських препаратів зовнішнього застосування (мазі, емульсії, лініменти й ін.). Особливий інтерес представляють ефірні олії, що містять фенольні сполуки, наприклад лаврове, кропове, лавандове, рожеве, ганусове, лимонне. Вони володіють не тільки консервуючими властивостями, але і бактерицидною активністю у відношенні патогенної мікрофлори шкіри, у тому числі дріжджів, що викликають кандидози.
В даний час усе більше застосування знаходять не індивідуальні консерванти, а сполучення антимікробних речовин, що володіють синергічним ефектом і мають широким спектром антимікробної дії.
Консервування зручне для аптек (можливість внутріаптечної заготівлі) і хворого (скорочення числа звертань в аптеку), важливо економічно використати усю виписану кількість лікарського препарату.
Рішення проблеми стабільності лікарських препаратів є дуже актуальним. Нестабільність рідких лікарських препаратів, виготовлених в аптеках, знаходить висвітлення в регламентації термінів їхнього збереження (від 1 до 10 сут). Терміни ж збереження лікарських препаратів після розкриття упакування при застосуванні лікарських препаратів у домашніх умовах і лікувальних установах ще не встановлені. Нестійкість стримує процес скорочення кількості лікарських препаратів індивідуального виготовлення і збільшення частки серійного внутріаптечного виробництва, заважає централізованому виготовленню у великих аптеках і постачанню ними сільських аптек.
Солюбілізуючі речовини (солюбілізатори)
З метою збільшення розчинності важкорозчинних чи практично нерозчинних лікарських речовин застосовують ПАР, що мають високе значення ГЛБ, наприклад твін-80, жовчні кислоти. Ці речовини часто називають солюбілізаторами. Солюбілізація – процес мимовільного переходу нерозчинної у воді речовини в розведений водяний розчин ПАР з утворенням термодинаміно стійкої системи. З підвищенням ГЛБ поліпшуються гідрофільні властивості ПАР, що супроводжується зростанням їхньої розчинності у воді.
Фізико-хімічні властивості ПАР: поверхнева активність, величина ККМ і ГЛБ, є визначальними для їхній солюбілізируючих властивостей.
У фармацевтичній практиці давно використовують солюбілізованні розчини. Іхтіол являє собою іхтіолову олію, солюбілізовано амонієвою сіллю сульфаіхтиолової кислоти; мильно-крезолові препарати й ін. Солюбілізатори використовують для виготовлення лікарських форм (частіше розчинів) для зовнішнього, внутрішнього й ін'єкційного введення. Застосування солюбілізатора дозволяє готувати лікарські форми з новими практично нерозчинними високоефективними лікарськими речовинами. Це групи нових антибіотиків, цитостатиков, гормональних препаратів і інших сполук. Так, наприклад, при використанні твіну-80 отримані ін'єкційні лікарські форми нового високоефективного цитостатика фенестерина, гормонів (сінестрола, октестрола) для ін'єкцій (раніше таблетки), ефірних олій (м'ятного для виготовлення води м'ятної), водяні розчини камфори (замість масляних) і ін.
Позитивним моментом при використанні розчинів солюбілізированних речовин, з погляду ефективності лікування, є швидка і повна резорбція лікарської речовини, що забезпечується високою дисперсністю його і впливом ПАР на мембранну проникність клітин. Це може привести і до зниження дозування лікарських речовин. Багато якы солюбілізированні лікарські речовини (гідрокортизон, преднізолон, сінестрол, барбитураті, антибіотики й ін.) не втрачають, а нерідко завдяки поліпшенню резорбції підвищують свою активність, особливо у водних розчинах.
Крім того, при використанні солюбілізаторів з'являється можливість заміни розчинника для ін'єкційних розчинів. Зокрема, це дуже важливо при виготовленні ін'єкційних розчинів камфори. Часто призначенні хворим при серцевосуднних захворюваннях масляні розчини камфори погано розсмоктуються і нерідко утворять олеомі – пухлини, що не пропадають при введенні водних розчинів камфори.
Використання солюбілізаторов дозволяє також замінити один шлях уведення лікарської речовини іншим, менш небезпечним і більш зручним для хворого. Наприклад, таблетки грізеофульвіна (протигрибковий антибіотик, нерозчинний у воді), призначувані хворому протягом тривалого часу при шкірних захворюваннях, можна замінити солюбілізированним розчином, застосовуваним зовнішньо. У даному випадку знижується небезпека кандидомікоза, що виникає при тривалому пероральному використанні антибіотиків.
Таким чином, застосування солюбілізаторов відкриває широкі технологічні можливості одержання високоефективних лікарських препаратів з більш зручним для хворого способом уведення,
Речовини, що пролонгують, (пролонгатори)
Допоміжні речовини, що збільшують час перебування лікарських засобів в організмі, називаються пролонгаторами. Лікарські засоби пролонгованої дії – це лікарські речовини в спеціальній лікарській формі, що забезпечує збільшення тривалості дії.
Використання пролонгованих лікарських форм відомо більш 20 років і викликано негативними явищами, що виникають при швидкому виведенні лікарських речовин з організму чи швидким руйнуванням у ньому, наприклад, антибіотиків, гормонів, вітамінів і ін. При цьому виникає необхідність частого введення лікарських речовин, що нерідко приводить до різкого коливання концентрації в організмі й у свою чергу обумовлює токсичність, побічні небажані явища (алергічні реакції, подразення і т. п.). Багаторазова інстилляция очних крапель викликає мацерацію слизової оболонки ока і тим самим сприяє виникненню інфекційних процесів. Швидке виведення лікарських речовин з організму викликає появу стійких форм мікроорганізмів. Часте застосування лікарських препаратів незручно і для хворого. Необхідне створення лікарських препаратів, однократний прийом яких зберігав би в організмі протягом тривалого чи заданого часу терапевтично активну концентрацію лікарської речовини, у тому числі надходження лікарської речовини з заданою швидкістю.
До компонентів, що пролонгують, крім вимог, пропонованих до допоміжних речовин, варто віднести і підтримку оптимального рівня лікарської речовини в організмі, відсутність різких коливань його концентрації.
В даний час установлено, що пролонгування дії лікарських речовин залежить від зменшення швидкості вивільнення їх з лікарської форми, депонування лікарської речовини в органах і тканинах, інактивації лікарських речовин ферментами і швидкості виведення з організму. Відомо, що максимум концентрації лікарської речовини в крові прямо пропорційно введеній дозі, швидкості усмоктування і зворотньо пропорційно швидкості виділення речовини з організму. Для створення лікарських препаратів із пролонгованою дією можна використовувати хімічні, фізіологічні і технологічні методи. До хімічних методів відносяться синтез важкорозчинних солей складних ефірів, тобто створення нових лікарських речовин, що не завжди можливо. Фізіологічні методи пролонгування полягають у впливі різних факторів (найчастіше речовин) на організм із метою затримки виведення лікарської речовини. Цей метод часто небезпечний для хворого, у зв'язку з чим мало використовується. Найбільше поширення одержали технологічні методи пролонгування: підвищення в'язкості дисперсійного середовища (виведення лікарської речовини в гель); створення сполук лікарських і допоміжних речовин за рахунок фізико-хімічних чи хімічних (ковалентиіх чи іонних) зв'язків; іммобілізація лікарських речовин на біодеградуючих системах; виведення лікарських речовин у плівкові оболонки; суспендування розчинних лікарських речовин; створення інших лікарських форм, наприклад очних лікарських плівок замість розчинів і інші методи.
Для екстемпорально виготовлених лікарських препаратів найбільш прийнятним технологічним методом є виведення лікарської речовини в гель чи використання як дисперсійне середовище неводних розчинників (ПЕО-400, олії й ін.). Як гель для пролонгованих лікарських препаратів найбільше широко використовують розчини ВМС, причому різної концентрації, що дозволяє регулювати час пролонгування. До таких речовин відносяться МЦ, КМЦ і натрій-КМЦ (1%). полівінол (1,4–2%), поліакриламід (0,5–1%), полівінілпіролідон. колаген і інші ВМС. Наприклад, у даний час застосовуються очні краплі – 1% розчини пілокарпіну гідрохлориду, скополаміну гідроброміду і 10% розчини сульфацил-натрія, пролонговані 1% МЦ, і інші лікарські препарати. З метою пролонгування дії очних крапель, ін'єкційних розчинів використовують і поліглюкін.
Речовини, що коригують (коригенти)
До коригентів відноситься група допоміжних речовин, застосування яких дає можливість виправляти смак, колір, запах різних лікарських речовин. Речовини, що коригують, мають велике значення в дитячій практиці. Установлено, що ефективний терапевтичний засіб, що має неприємний смак, у дітей робить у багато разів менший ефект чи узагалі не робить лікувального впливу. Допоміжні речовини, що коригують, мають давню історію, однак у даний час вони використовуються ще недостатньо, що зв'язано з рішенням ряду проблем. Так, з огляду на складне сприйняття смаку, важко здійснювати підбор корригентов для лікарських речовин, що володіють гірким, солоним, кислим смаком чи складними їх сполученнями. Необхідно також враховувати можливість зміни усмоктуваності лікарських речовин з коригированих лікарських форм. Відомо, наприклад, що цукровий сироп і деякі фруктові сиропи знижують резорбцію амідопірина, сульфаніламідів, антибіотиків з коригируємих ними форм.
При підборі речовин, що коригують, варто враховувати основні положення теорії смаку. Якщо всі смакові відчуття розділяють на чотири основні групи (відчуття кислого, солодкого, гіркого, солоного), то лікарські речовини мають більш складні сполучення відчуттів (наприклад, гірко-соленій, солодко-кислий і ін.). Звідси складність у підборі корригентов для лікарських речовин.
Як коригуючі речовини в даний час запропоновані до застосування природні і синтетичні речовини звичайно у виді розчинів, сиропів, екстрактів, есенцій. Із сиропів особливо поширені цукровий, вишневий, малиновий, солодковий, з речовин, що підсолоджують – сахароза, лактоза, фруктоза, сорбіт, сахарин. Найбільш перспективним є сорбіт-замінник сахарози, утворюючи в’язкі розчини, він також стабілізує багато лікарських речовин. Крім зазначених речовин, для виправлення смаку використовують різні ВМС, макромолекули яких як би обволікають молекули лікарських речовин і смакові рецептори. До них відносяться агар, альгинати, МЦ, пектини. Дією, що коригує, володіють і ефірні олії: м'ятна, ганусова, апельсинова.
Барвні речовини.
Допоміжні речовини цієї групи застосовуються головним чином:
· з метою забезпечення безпеки (наприклад, підфарбовування розчину ртуті дихлорида для відмінності його від інших розчинів),
· унаслідок необхідності ідентифікації деяких ліків (наприклад, фарбування пресованих супозиторіїв),
· по естетичним причинам,
· з метою більш сприятливого впливу на психіку хворих, особливо дітей.
Однак введення в ліки барвних речовин, щоправда, у меншому ступені, чим консервантів, усе-таки гостро ставить проблему всебічного з'ясування їхнього впливу на системи і функції організму, з одного боку, і з іншого боку – на можливу зміну активності лікувальної субстанції в присутності додаткового компонента – барвної речовини.
З огляду на непотрібність барвних речовин у розвитку фармакологічної реакції і небезпека їх для організму як небажаних хімічних добавок, учені намагаються обмежити сферу їхнього застосування у виробництві ліків, по можливості обходячись природними барвниками. У ряді країн (Бельгія, Данія) узагалі немає дозволених барвників.
В даний час у вітчизняній промисловості використовуються наступні синтетичні барвники:
· тартразин, розчини якого мають золотаво-жовтий колір,
· індиго – барвник синього кольору
· еозин, що утворить розчини червоно-рожевого кольору (вводиться в таблетки ртуті дихлорида).
У досвідах не встановлено побічної дії тартразина на тварин, однак будова ядра цього барвника змушує вчених насторожено відноситися до його застосування. Вважається, що необхідно подальше дослідження перетворень тартразина в організмі людини з метою повного виключення його негативної дії.
Таким чином, застосування допоміжних речовин представляє актуальну проблему сучасної технології лікарських форм. Раціональне використання допоміжних речовин дозволяє значно підвищувати ефективність фармакотерапії.
Одержання ж нових допоміжних речовин дозволить створювати принципово нові високоефективні лікарські форми, зручні для застосування і тривалі терміни, що мають досить, придатності.
Допоміжні речовини – це додаткові речовини, необхідні для приготування лікарського препарату.
Допоміжні речовини повинні бути дозволені до медичного застосування відповідною нормативною документацією.
Створення ефективних лікарських препаратів вимагає застосування великого числа допоміжних речовин.
Ці речовини можуть у значній мірі впливати на фармакологічну активність лікарських речовин: підсилювати дію лікарських засобів чи навпаки знижувати їхню активність, змінювати характер дії під впливом різних причин, а саме комплексоутворювання, молекулярних реакцій і ін.
Допоміжні речовини впливають на резорбцію (вивільнення) лікарських речовин з лікарських форм, підсилюючи чи сповільнюючи її.
Отже при використанні допоміжних речовин можна регулювати фармакодинамику лікарських речовин (сукупність ефектів, викликуваних лікарською речовиною) і їхню фармакокінетику (зміна от часу концентрації лікарських речовин в органах і тканинах).
Правильним підбором допоміжних речовин можна локалізувати дію лікарських засобів.
Допоміжні речовини впливають не тільки на терапевтичну активність лікарської речовини, але і на фізико-хімічні характеристики лікарських форм у процесі їхнього виготовлення і збереження.
Додавання різних стабілізуючих речовин забезпечує високу ефективність лікарських препаратів протягом тривалого часу, що має не тільки велике медичне, але й економічне значення, тому що дозволяє збільшити термін придатності лікарських препаратів.
Допоміжні речовини є обов'язковими інгредієнтами майже всіх лікарських препаратів і при використанні вступають у контакт з органами і тканинами організму, тому до них пред'являються визначені вимоги:
1) Допоміжні речовини не повинні робити впливу і змінювати біологічну доступність лікарського засобу;
2) Застосовувані кількості повинні бути біологічно нешкідливі і біосумісні з тканинами організму, а також не робити алергізуючої і токсичної дії;
3) Допоміжні речовини повинні додавати лікарській формі необхідні властивості: структурно-механічні, фізико-хімічні і, отже, забезпечувати біодоступність.
4) Допоміжні речовини не повинні чинити негативного впливу на смак, запах, колір і ін.;
5) відсутність хімічної чи фізико-хімічної взаємодії з лікарськими речовинами, пакувальними й закупорювальними матеріалами, а також матеріалом технологічного устаткування в процесі приготування лікарських препаратів і при їхньому збереженні;
6) відповідність у залежності від ступеня мікробіологічної чистоти виготовленого препарату (як кінцевого продукту) вимогам гранично припустимої мікробної контамінації; можливість піддаватися стерилізації, оскільки допоміжні речовини іноді є основним джерелом мікробного забруднення лікарських препаратів;
Застосування допоміжних речовин представляє актуальну проблему сучасної технології лікарських форм, а одержання нових допоміжних речовин дозволить створювати принципово нові високоефективні лікарські форми, зручні для застосування і з тривалими термінами придатності.
1. Александров И.Д., Субботин В.М. Справочник по технологии приготовления лекарственніх форм. Ростов на Дону: «Феникс», 2000 – 192 с.
2. Ажгихин И.С. Технология лекарств. М.: Медицина, 1980 – 436 с.
3. Государственная фармакопея СССР. – 11-е изд.-М.: Медицина, 1987.-Т.1.-336 с.-Т.2. – 40 с.
4. Государственная фармакопея СССР. – 10-е изд. – М.: Медицина, 1968. – 1079 с.
5. Государственная фармакопея СССР. – 9-е изд. – М.: Медгиз, -1961. – 911 с.
6. Грецкий В.М., Хоменок В.С. Руководство к практическим занятиям по технологии лекарственніх форм.-М.: Медицина, 1991.
7. Кондратьева Т.С., Иванова Л.А. Технология лекарственніх форм в 2-х томах. – Т.1. – М.: Медицина, 1991. – 496 с.
8. Машковський М.Д. Лекарственніе средства.-М.:Медицина, 2000.-Т.1–2.
9. Муравьев И.А. Технология лекарственніх форм. – М.: Медицина, 1988.-497 с.
10. Перцев І.М., Шевченко Л, Д., Чаговець Р.К. Практикум з аптечної технології ліків. – Харків: Прапор, 1995. – 303 с.
11. Перцев И.М., Чаговец Р.К. Руководство к лабораторнім занятиям по аптечной технологии лекарственніх форм.-К.: Вища школа, 1987.-290 с.
12. Півненко Г.П., Чаговець Р.К., Перцев Г.М. Практикум з аптечної технології ліків.-К.: Вища школа, 1972.
13. Тихонов 0.І., Ярних Т.Г. Аптечна технологія ліків. – Харків: Оригінал, 1995. – 600 с.
14. Тихонов О.І. Ярних Т.Г. Навчальний посібник з аптечної технології ліків. Х. Основа, 1998.
15. Тихонов О.І. Ярних Т.Г. Биофармация. Х. НФаУ, 2003 – 240 с.
16. Н-з №44 від 16.03.93 р. Про організацію зберігання в аптечних установах різних груп ЛЗ.
17. Н-з №96 від 03.04.91 р. О контроле качества ЛС изготовляеміх в аптеках.
18. Н-з №197 від 7.09.93 р. Про затвердження інструкції по приготуванню в аптеках ЛФ з рідким дисперсним середовищем.
19. Н-з №275 від 05.05.06 р. «Про затвердження інструкції із санітарно-протиепідемічного режиму аптечних закладів».
20. Н-з №360 від 19.07.05 р. Про затвердження правил виписування рецептів та вимог-замовлень на лікарські засоби і вироби медичного призначення, порядку відпуску лікарських засобів і виробів медичного призначення з аптек та їх структурних підрозділів, Інструкції про порядок зберігання, обліку та знищення рецептурних бланків та вимог-замовлень. Зміни до наказу №360 – наказ №440 від 04.07.06 р.
21. Н-з №583 від 19.07.72 р. Единственные правила оформлении лекарств изготовляемых в аптеках.
22. Н-з №626 від 15.12.2004 р. «Про затвердження правил виробництва (виготовлення) ЛЗ в умовах аптеки».
... повинна вписуватися в технологічну схему як один з елементів процесу, інтенсифікуючи або, принаймні, не зменшуючи продуктивності праці. 2. Види внутрішньоаптечного контролю й основні форми його удосконалення 2.1 Контроль якості ліків в умовах аптек У державному нормуванні виробництва лікарських препаратів велика увага приділяється контролю якості готового продукту. Якість лікарського ...
... запобігаючи випадкам перевищення дозувань. Крім того, наявність скляного крана значно полегшує роботу фармацевта. У 1964 р. ВНДІФ була розроблена нова модель бюреточної установки з ручним приводом. В аптечній практиці частіше використовують два типи бюреточних установок: УБ-10 і УБ-16, які мають уніфіковану конструкцію настільного типу і складаються з триноги зі стійкою, на якій рухливо (на пі ...
... операції роблять з дотриманням високої чистоти й умов, що охороняють ліки, що готуються, від потрапляння в них мікрофлори. Такі ліки виготовляють у спеціальному блоці. 2. Приміщення для виробництва стерильних лікарських засобів Атмосферні аэрозолі, особливо в промислових центрах і великих містах, являють собою складну, по своєму складу суміш, що постійно змінюється мінерального пилу, ...
... – С.205-206 (Особистий внесок: участь у дослідженнях, оформлення матеріалів і підготовка до публікації). АНОТАЦІЯ Зейдо Фірас Мазен. Опрацювання складу, технології та дослідження вагінальних супозиторіїв противірусної дії з Протефлазідом. – Рукопис. Дисертація на здобуття наукового ступеня кандидата фармацевтичних наук за спеціальністю 15.00.01 – технологія ліків та організація фармацевтичної ...
0 комментариев