1. Открытие генетической роли нуклеиновых кислот.

Начало генетике как науке было положено чешским учёным
Г. Менделем, который скрещивал между собой различные сорта гороха и наблюдал за изменениями их окраски, формы, вида и других признаков. Мендель установил, что у получаемых гибридов в первом поколении одни признаки подавляют другие. Каждому из наследуемых признаков Мендель поставил в соответствие материальную частичку живого, передаваемого из поколения в поколение, - элементарную носительницу информации, и назвал её геном. Изучая поведение и характер взаимодействия генов по их проявлению в потомстве, Мендель открыл свои знаменитые законы скрещивания генов и сделал доклад в 1865 на собрании Брюнского общества естествоиспытателей и, напечатанный на следующий год в трудах этого общества. Но в течение почти 35 лет в мире не было, ни одного учёного, который мог бы по достоинству оценить работу учёного и продолжить его исследования. Они были «настолько хорошо забыты наукой», что в 1900 году три исследователя – де Фриз в Голландии, Корренс в Германии и Чермак в Австралии, проводя свои исследования по делению клеток, вторично, не зависимо друг от друга, открыли законы Менделя. Их поразило сходство его результатов с результатами, полученными ими. Но, не смотря на то, что обнаружив позже статью учёного, они уступили приоритет открытия законов наследственности их первооткрывателю – Менделю, датой рождения генетики принято считать 1900 год.

Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны – этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем.

В начале XX века было установлено, что описанные Менделем генетические факторы находятся в хромосомном клеточном ядре.

Параллельно с генетиками биохимики изучали химический состав ядер живых клеток. Впервые молекулы ДНК были выделены из ядер живых лейкоцитов швейцарским биохимиком Ф. Мишером во второй половине прошлого века. Имя Мишера прославила и увековечила в истории науки его статья, опубликованная в 1871 голу в «Журнале медицинской химии», издававшемся в Берлине. Именно в ней он описал выделение «нуклеина» из клеток гноя – лейкоцитов и лимфоцитов. Название новому веществу Иоганн образовал от латинского «нуклеус», которое означает ядро (орех), поскольку вещество действительно выделялось из клеток ядра.

А. Коссель обратился к нуклеину Мишера и, начиная с 1855 года, за шесть лет выделил и определил структуру четырёх оснований кислой фракции Мишера. Он обнаружил, что в состав нуклеиновых кислот входят пуриновые и пиримидиновые основания, а также простейшие углеводы. Химиков уже не удивлял тот факт, что в биополимерах кислое и щелочное «уживаются» бок обок. Гуанин Коссель назвал «сарцином», поскольку его много в «саркосе» - мясо по-гречески. Аденин он нашёл в большом количестве в желтке яиц. Сахар тимусной кислоты, в отличии от рибозы, содержащий на одну молекулу кислорода меньше стали называть «безкислородным», или дезоксирибозой. Так родились известные теперь всему миру – ДНК и РНК. Коссель выделил также из хроматина различных тканей белок со щелочной реакцией – «гистон». Из гистона он выделил аминокислоты гистидин, тирозин и лизин. Так, прямо в лаборатории, рождалась научная терминология современной биологии. Косселя по праву считают создателем физиологической химии. Коссель за исследование нарушения нуклеино-кислотного обмена и отложения оснований ДНК и РНК в суставах при подагре был награждён Нобелевской премией.

А далее в дело вступил Фебус Теодор Левин, учёный от бога, которого считают американским биохимиком, на самом деле, он уроженец России. В начале 1900 года в лаборатории П. Левина в США был расшифрован углеводный компонент этих нуклеиновых кислот.

Был определён порядок расположения частей нуклеотида – мономера нуклеиновых кислот, а также места присоединения основания и фосфора к сахарному кольцу. Левен и немец Фёльген опубликовали цепочную схему строения нуклеиновых кислот, историческая правда заключается в том, что цепь была одна. Фёльген сделал в 1914 году самое большое открытие, но оно оказалось не востребованным из-за начавшейся войны.

Сугубо химическая реакция Фёльгена с использованием анилинового красителя фуксина из каменноугольной смолы приводила к тому, что тимусная кислота (ДНК) давала характерное тёмно-розовое окрашивание, в то время как дрожжевая (РНК) – нет. Если бы тогда коллеги обратили на это удивительное открытие внимание, природа гена могла быть открыта на три десятилетия раньше.

В установлении роли ДНК в клетках также было несколько этапов. Особенно усиленно разработкой этого вопроса занимались американские учёные О. Эвери, К. Мак-Леоду и М. Мак-Карти. В 1944 году им удалось установить, что свободная молекула ДНК обладает трансформирующей активностью, т.е. способностью переносить свойства одного организма к другому. Это было революционное открытие, родившее новую науку, изучавшую вопросы наследственности на молекулярном уровне. Центральное место в этой науке отводилось исследованию роли ДНК. ДНК, являясь «хранительницей» материальной основы генетической информации контролирует биосинтез белка в клетках и отвечает за изменчивость клеток. Именно молекула ДНК отвечает за передачу наследственной информации от одной клетки к другой.



Информация о работе «Неоевгеника – история становления, основные направления, перспективы развития»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 55536
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
83689
1
0

... можно отметить: сотрудничество родителей и педагогов; увеличение объединений – участников программы; взаимодействие с лабораторией проблем дополнительного образования и воспитания; поддержку программы "Одаренные дети" администрацией Центра; в рамках программы начата исследовательская деятельность педагогов. Написаны психологические портреты одаренных детей своих коллективов; проведение ...

0 комментариев


Наверх