2 МЕТОД АНАЛИЗА ЭЭГ В ЧАСТОТНОЙ ОБЛАСТИ
Согласно теории обработки сигналов к спектрально-корреляционным методам относятся разложение сигнала в ряд Фурье, построение спектра мощности, спектральной плотности мощности, автокорреляционной и кросскорреляционной (взаимно корреляционной) функции и т.д. Электроэнцефалография - метод исследования головного мозга, основанный на регистрации его электрических потенциалов.
Электроэнцефалограмма (ЭЭГ) - сигнал, получаемый при регистрации электрической активности головного мозга.
Перед тем, как приступить к описанию методов, с помощью которых автоматизируется анализ ЭЭГ, необходимо сделать одно допущение. Все нижеперечисленные методы, согласно теории обработки сигналов, могут быть применимы для стационарных случайных процессов. Очевидно, что ЭЭГ таковым процессом не является. Обычно в таких случаях при анализе выбирают участки, которые условно можно считать стационарными или, иначе, квазистационарными, и длина которых достаточно велика для получения статистически разумных результатов.
Другой особенностью, выявленной при проведении экспериментов с некоторым достаточно большим количеством ЭЭГ, является то, что в данном случае оценка процесса является скорее качественной, чем количественной. По крайней мере, для электроэнцефалографии нет каких-либо нормативных таблиц основных параметров сигнала, как это имеет место в электромиографии или кардиографии, и каждая ЭЭГ может характеризоваться своей определенной совокупностью параметров. Эти параметры варьируются для разных ЭЭГ, которые при этом могут относиться к одному из классов патологии или быть в норме. Применение алгоритмов обработки стационарных сигналов для анализа ЭЭГ в данном случае можно считать переходом от одной формы отображения информации к другой, более удобной, компактной и информативной. Также стоит отметить, что широко используемые методы обработки ЭЭГ, в общем-то, не учитывают ее биологический генез, а рассматривают ее как некий колебательный процесс и, как следствие, получаемые таким образом результаты не всегда удовлетворяют пользователя. И тот факт, что ЭЭГ представляет собой интегральную оценку электрофизиологической деятельности миллиардов элементарных источников, к тому же отфильтрованной естественными костно-тканевыми распределенными фильтрами, позволяет сказать, что использование рядов Фурье, корреляционного анализа для обработки ЭЭГ можно рассматривать только как более удобное в некоторых случаях изображение той же ЭЭГ и не более.
Некоторые специалисты считают, что достаточно визуального просмотра ЭЭГ, тем не менее, большую популярность начинают завоевывать методы математической обработки и представления сигналов. Так как в электроэнцефалографии основными параметрами являются частота и амплитуда, то необходимо иметь методы оценки сигнала с помощью амплитудно-частотных характеристик. Наибольшее распространение получили методы вычисления спектра мощности сигнала и построение топокартограмм головного мозга с помощью цветового представления амплитуды. Для этого обычно используют преобразования Фурье или, адаптированное для спектрального анализа ЭЭГ, преобразование Berg. Рассмотрим основные алгоритмы определения спектра сигнала.
Первый и наиболее часто используемый способ – использование алгоритма быстрого преобразования Фурье (БПФ). В настоящее время существует множество программных пакетов, созданных специально для реализации алгоритмов БПФ. Но, как показывает практика, использование классического БПФ не всегда удовлетворяет пользователя. Во-первых, несмотря на разнообразие способов ускорения этого алгоритма (оптимизация по периоду анализа, перевод некоторых функций на язык ассемблера), работает он достаточно медленно. Во-вторых, преобразование Фурье обладает некоторыми особенностями, которые отчасти затрудняют согласование получаемых с его помощью данных с данными визуального анализа. Суть их заключается в том, что на ЭЭГ медленные колебания имеют большую амплитуду и длительность, чем высокочастотные. В связи с этим в спектре, построенном по классическому алгоритму Фурье, наблюдается диспропорциональное преобладание низких частот. Для обхождения этого разработано преобразование BERG, специально адаптированное к детектированию быстрых изменений в спектре ЭЭГ и выравнивающее его в зависимости от частоты.
Процедура вычисления преобразования BERG основывается на тех же принципах, что и преобразование Фурье, однако с тем отличием, что для каждой полосы спектра в исследуемой ЭЭГ эпоха анализа выбирается обратно пропорционально частоте и составляет T=16/f (c). Так, соответственно частота 2 Гц вычисляется за 8 с, 4 Гц - за 4 с, 6 Гц - за 2,6 с и т.д. Это преобразование дает результаты более соответствующие субъективным оценкам визуального анализа ЭЭГ при большей точности и надежности информации, и особенно пригодно для детектирования быстро меняющихся колебаний на ЭЭГ, что обеспечивается подчеркиванием более быстрых частот в спектре.
Оба эти алгоритма хороши в том случае, если нет необходимости в высокой скорости обработки процесса. В электроэнцефалографии, когда анализу подвергаются участки записи в несколько десятков секунд, а иногда и минут, они не всегда могут удовлетворять потребностям пользователя или будут требовать мощных и, естественно, дорогих вычислительных ресурсов. Поэтому возникает необходимость разработки более скоростного метода разложения и представления сигнала. Причем следует учитывать, что в данном случае не нужна сверхвысокая точность расчетов, поскольку все же математические методы оценки ЭЭГ дают скорее качественную, чем количественную оценку протекающим процессам. Учитывая эти особенности, здесь для анализа электроэнцефалографического сигнала представлен алгоритм, который можно назвать дискретным преобразованием Фурье с прореживанием по времени. Справедливость использования данного алгоритма объясняется следующим. Так как частоту дискретизации для ЭЭГ не рекомендуется выбирать меньше, чем 200 Гц, а диапазон значимых частот располагается в пределах от 1 до 25 Гц (верхняя частота низкочастотного бета-диапазона), то можно выполнить прореживание дискретного ЭЭГ-сигнала по времени и использовать для анализа каждую четвертую точку. Это равносильно тому, что частота дискретизации уменьшится до 50 Гц. Согласно теореме Котельникова–Шеннона при такой частоте дискретизации без искажения будет передана верхняя полоса в 25 Гц. Для некоторых алгоритмов представления ЭЭГ такое значение будет удовлетворять (в частности, для реализации картирования).
Известно, что любой гармонический сигнал, при разложении его на комплексной плоскости, имеет две составляющие – синусную и косинусную. Поэтому для применения алгоритма дискретного преобразования Фурье необходимо задать массивы значений синусов и косинусов каждой представленной частоты. Точность разложения равна необходимой точности представления частот. Причем длительности этих массивов должны быть равными длине окна анализа алгоритма преобразования Фурье.
С помощью спектра мощности можно легко получить картину распределения ЭЭГ по ритмам, определить доминирующий ритм и доминирующую частоту как всей ЭЭГ, так и каждого отдельного ритма. Построив спектры мощности симметричных отведений левого и правого полушарий, можно оценить степень асимметрии между этими участками по каждому ритму и по каждой конкретной частоте [4].
... стволам. Исходя из вышесказанного, можно дать следующее определение данного метода функциональной диагностики. ЭМГ (ЭНМГ) - это комплекс методов оценки функционального состояния нервно-мышечной системы, основанный на регистрации и качественно - количественном анализе различных видов электрической активности нервов и мышц. Это определение, на наш взгляд, стирает различия между ЭМГ и ЭНМГ, ...
... ритмомелодических характеристик текста на восприятие его смысла и возникновение определенного эмоционального состояния. Выявлен существенно сходный характер воздействия ритмомелодической структуры вербального и музыкального текстов на эмоциональную сферу воспринимающих (при восприятии текстов разных знаковых систем испытуемые фиксируют эмоции одинаковой модальности). Чрезвычайно важно, что ...
... ); в области выслушивания звуков над легочной артерией (во втором межреберье у левого края грудины) и в области трехстворчатого клапана (в четвертом - пятом межреберье у правого края грудины). ПРИБОРЫ ДЛЯ РЕГИСТРАЦИИ ТЕПЛОВЫХ ПРОЦЕССОВ. ТЕРМОГРАФИЯ. В человеческом организме вследствие экзотермических биохимических процессов в клетках и тканях, а также за счет высвобождения энергии, ...
... эмиссионная томография (ОЭТ); позитронная эмиссионная томография (ПЭТ). Весь этот комплекс методов позволяет проводить неинвазивное изучение структуры и функций мозга. Психофизиологическое изучение психических процессов и состояний Принципы кодирования информации в нервной системе Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и ...
0 комментариев