2. ЭЛЕКТРОХИМИЧЕСКОЕ ОКИСЛЕНИЕ В МОДЕЛИРОВАНИИ ФУНКЦИИ МОНООКСИГЕНАЗ ПЕЧЕНИ
С точки зрения электрохимии возможны три подхода в моделировании функций монооксигеназ печени.
Первое направление — это катодное гидромксилирование за счет двухэлектронного восстановления кислорода, растворенного в крови, на подходящем катоде с поставкой электронов от внешнего источника тока по общему уравнению:
О2+ 2H+ + 2e + RH → ROH + H2O. (1)
При этом механизм протекающих процессов может быть очень сложен. Электрод может выступать как замена окислительно-восстановительной ферментной цепи, поставляющей на фермент Р-450 электроны, необходимые для активации молекулярного кислорода, или обеспечить дополнительную электрохимическую активацию молекулярного кислорода, ускоряя работу микросомальной гидроксилирующей системы. На электродах из различных углеродистых материалов, золота и некоторых других в результате двухэлектронного восстановления кислорода будет образовываться перекись водорода, которая может принимать участие в различных реакциях окисления токсинов, катализируемых ферментами в крови.
Второе направление — это прямое анодное окислительное гидроксилирование различных токсинов по общей реакции:
RH + 2OH— → 2e → ROH + H2O. (2)
Путем увеличения анодного потенциала и правильного подбора материала электрода катализатора можно добиться окисления практически любого органического соединения. Поэтому на сегодняшний день это направление является наиболее перспективным в моделировании функции монооксигеназ печени и полностью независимым от работы ферментативных систем.
Третье направление — это электрокаталитическое гидроксилирование в короткозамкнутом топливном элементе, на катоде-катализаторе которого происходит восстановление растворенного в крови кислорода, а на аноде-катализаторе окисление (гидроксилирование) по реакции (2). Так как между катодом и анодом происходит обмен электронами, суммарная реакция, протекающая в таком топливномливном элементе, следующая:
2 RH + O2 → 2 ROH
В принципе, это наиболее идеальная система в моделировании функции монооксигеназ печени, так как она не требует притока электронов извне (т. е. не требует внешнего источника тока) и является саморегулирующейся системой. Однако большинство ксенобиотиков и токсинов даже на наиболее активных платиновых электродах-катализаторах окисляется с трудом, при достаточно положительных потенциалах. В тоже время на на менее активных из известных в настоящее время кислородных электродах энергетические потери составляют 0,2—0,3 В. Таким образом современное состояние электрокатализа не может обеспечить на известных катализаторах окисление с достаточной скоростью всех токсинов в таких короткозамкнутых топливных элементах. Поэтому основное внимание было сосредоточено на моделировании монооксигеназ печени прямым электрохимическим окислением.
ЗАКЛЮЧЕНИЕ
Проведенные исследования показали возможности электрохимического окисления в моделировании функции монооксигеназ печени, а также в создании электрохимической модели монооксигеназной системы печени. Изучение электрохимического окисления различных токсинов эндогенного происхождения и ксенобиотиков как на стендах, так и на животных показало, что продукты электроокисления идентичны тем, которые образуются при окислении токсинов в печени. Возможность создания искусственных систем, способных осуществлять гидроксилазные реакции, протекающие в эндоплазматическом ретикулуме клеток печени, лимитируется не собственно возможностями электрохимического окисления токсинов, а проблемой белковой защиты, т. е. связыванием токсина альбумином в организме и проблемой совместимости электрохимической ячейки с кровью. Поэтому все предложенные ранее системы оказались неработоспособными в крови и других биологических жидкостях. Подробное изучение электрохимического окисления различных токсинов прямо в крови, и других физиологических жидкостях, исследования совместимости электрохимической ячейки с кровью позволили создать искусственную детоксицирующую систему клинического назначения.
Так как создание электрохимической модели монооксигеназной системы печени столкнулось с серьезной проблемой совместимости электрохимической ячейки с кровью, был предложен метод непрямого электрохимического окисления крови с использованием переносчиков активного кислорода, когда кровь не вступает в контакт с электрохимической системой, т. е. электролизу подвергается раствор переносчика кислорода, который затем вводится пациенту.
В качестве наиболее удобного и физиологического переносчика кислорода использован изотонический раствор хлористого натрия, в котором при электролизе на подходящих анодах происходит накопление активного кислорода в виде гипохлорита натрия. Показано, что среди реакций окисления гипохлоритом имеются почти все типы реакций катализируемых моноок-сигеназами. Окисление ряда ксенобиотиков и эндотоксинов гипохлоритом приводит к образованию конечных продуктов, аналогичных получаемым с участием цитохрома Р-450. Гипохлорит натрия позволяет обойти эффект белковой защиты токсичных метаболитов и моделирует не только функции монооксигеназ печени, но и молекулярные механизмы фагоцитоза.
Исследования в модельных растворах, в плазме крови и в экспериментах на животных позволили перейти к клиническому использованию непрямого электрохимического окисления.
Список использованной литературы:
1. Арчаков А. И, Микросомальное окисление.— М.: Наука, 2005.— 327 с.
2. Жирнов Г. Ф. Изотов М. В., Корузина И. И. и др. // Вопросы мед. химии,— 2008,— № 2,— С, 218—222.
3. Комаров Б. Д., Лужников Е. А., Шиманко И. И. Хирургические методы лечения острых отравлении.— М.: Медицина, 2001.— 270 с.
4. Корыта И. Ионы, электроды, мембраны,— М.: Химия , 1983.— 263 с.
5. Лопаткин Н.А., Лопухин Ю.М. Эфферентные методы в медицине. – М.: Медицина, 2006. – 234с.
6. Лопухин Ю.М., Молоденков М.Н. Гемосорбция.–М.: Медицина, 2008.–301с.
7. Лопухин Ю. М., Молоденков М. И. Гемосорбция.— 2-е изд. перераб. И доп.— М.: Медицина, 2005.— 288 с.
8. Лопухин Ю, М., Арчаков А. И., Владимиров Ю. А., Коган Э. М. Холе-
стериноз,— М.: Медицина, 2003,— 352 с.
9. Метелица Д. И. Активация кислорода ферментными системами.— М.: Наука, 2002.— 254 с.
10. Полукаров Ю.М. Электрохимия и медицина. Итоги науки и техники М.: - 2000. – 251 с.
11. Томилов А. П., Майрановский С. Г., Фиочшн М.Б., Смирнов В. А. Электрохимия органических соединении.— Л.: Химия, 2008.— 590 с.
12. Эпплби А. Дж. Электрохимия. Прошедшие тридцать и будущие тридцать лет. / Ред. Блума Г., Гутман Ф. – М.: Химия, 2002. – с. 349-351.
... параметров ионного и электронного транспорта в переходных слоях интерфазы. 4. Принципы создания твердофазных электрохимических преобразователей энергии и информации. 5. Гипотеза о самоорганизации переходных ион-проводящих структур при протекании электрохимических и химических процессов на фазовых границах. Определяющую роль матричных структур в твердофазных электродных реакциях. ...
... широко известным из которых является электрофорез. Все вышеизложенное позволяет отнести тему нашей работы по исследованию механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях к новому актуальному научному направлению – электрохимической кинетике. Цель работы На основании теоретических и экспериментальных исследований определить особенности ...
... метода для обеззараживания природных и сточных вод. В их числе такие документы, как Методические указания МУ 2.1.4.719-98 "Санитарный надзор за применением ультрафиолетового излучения в технологии подготовки питьевой воды"; МУ 2.1.5.732-99 "Санитарно-эпидемиологический надзор за обеззараживанием сточных вод ультрафиолетовым излучением"; МУ 2.1.2.694-98 "Использование ультрафиолетового излучения ...
... пособие по прикладной химии «Задачи по теоретическим основам химической технологии», составленное по материалам представленной работы. 3. Методика решения задач по теоретическим основам химической технологии Одна из главных задач химической науки и промышленности - получение необходимых человеку веществ (продуктов, материалов). Поэтому большинство учебных химических задач снизано с ...
0 комментариев