1. Конечность.
Всякие реальные объекты как часть реального мира бесконечны по своим свойствам и связям с другими объектами. Однако, если иметь в виду наши возможности по познанию, то здесь мы ограничены своими собственными ресурсами - число нервных клеток мозга, число действий, которые можем выполнить в единицу времени, само время, в течение которого мы можем решать какую-то задачу; ограничены внешние ресурсы, которые мы можем вовлечь в процесс своей деятельности, т.е. необходимо познавать бесконечный мир конечными средствами. Все модели конечны. Абстрактные модели конечны изначально - они сразу наделяются фиксированным числом свойств. Реальные модели конечны в том смысле, что из бесконечного множества их свойств выбираются и используются лишь некоторые, подобные интересующим нас свойствами объекта-оригинала. Модель подобна оригиналу в конечном числе отношений.
2. Упрощенность.
Конечность моделей делает их упрощенность неизбежной, но в человеческой практике эта упрощенность является допустимой, т.к. для любой цели оказывается достаточным, неполное, упрощенное отображение действительности. Для конкретных целей такое упрощение является и необходимым, т.к. позволяет выявить главные эффекты и свойства оригинала (физические абстракции - идеальный газ, абсолютное черное тело, ...).
Вынужденное упрощение модели - необходимость оперирования с ней - ресурсное упрощение.
Еще один аспект: из двух моделей, описывающих с одинаковой точностью некоторый объект, ближе к оригиналу (к истинной его природе) оказывается та, которая проще.
3. Приближенность моделей.
С этим термином связывается количественное различие модели и оригинала (качественные различия связаны с терминами конечность и упрощенность). Это количественное различие есть всегда и само по себе не является ни большим, ни малым, его мера вводится соотнесением этого различия с целью моделирования (часы - модель времени).
4. Адекватность.
Адекватна та модель, с помощью которой успешно достигается поставленная цель. Это не равносильно понятию полноты, точности, правильности точности модели. Модель Птолемея адекватна (в смысле точности описания движения планет). Адекватная, но ложная модель (успешное врачевание с помощью заклинаний духов). Иногда удается ввести некоторую меру адекватности. Тогда можно рассматривать вопросы об идентификации модели (т.е. нахождение в данном классе наиболее адекватной) об устойчивости моделей, об их адаптации.
14. Сходство модели и оригинала. Адекватность модели. Истинность моделей. Сочетание истинности и ложностиВажнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели, т. е. соответствия модели моделируемому объекту или процессу. Адекватность модели - в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно и для экономико-математического моделирования. При моделировании имеется в виду не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для исследования. Проверка адекватности экономико-математических моделей является весьма серьезной проблемой, тем более, что ее осложняет трудность измерения экономических величин. Однако без такой проверки применение результатов моделирования в управленческих решениях может не только оказаться мало полезным, но и принести существенный вред.
Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько веpно данная модель отражает объект и насколько полно она его отpажает. (В процессе моделирования выделяются специальные этапы – этап верификации модели и оценка ее адекватности). В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными пpиpодными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные пpедметы создаются со специальной целью изобpазить, скопиpовать, воспpоизвести опpеделенные чеpты естественного пpедмета.
Таким обpазом, можно говоpить о том, истинность пpисуща матеpиальным моделям:- в силу связи их с опpеделенными знаниями;- в силу наличия (или отсутствия) изомоpфизма ее стpуктуpы со стpуктуpой моделиpуемого пpоцесса или явления; в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.
И в этом отношении материальная модель является гносеологически вторичной, выступает как элемент гносеологического отражения.
15. Динамика модели. Процесс моделирования. Причины невозможности полной алгоритмизации процесса моделированияНа входе и выходе имеем зависимости параметров X и Y от времени t. Задача состоит в определении черного ящика.
Допустим, что на вход системы, до этого находившейся в нулевых начальных условиях, подали единичный сигнал X(t). Если на выходе будет наблюдаться экспоненциальный сигнал, то это система первого порядка. Для ее описания достаточно одной производной, а в решении модели будет присутствовать один интеграл. Так как один интеграл "всегда порождает" одну экспоненту, два интеграла - две экспоненты. Чтобы определить, является ли кривая экспонентой, в каждой точке проводится касательная до пересечения с линией установившегося уровня. В любой точке T должна быть постоянной величиной. Величина T характеризует инерционность системы (память). При малой величине T система слабо зависит от предыстории и вход мгновенно заставляет измениться выход. При большой величине T система, медленно реагирует на входной сигнал, а при очень большой T - система неизменна.
Звено первого порядка обладает двумя параметрами:
1) инерционность - T
2) коэффициент усиления
Введем понятие передаточной функции как модели динамической системы. По определению передаточная функция - это отношение выхода ко входу
Передаточная функция звена первого порядка имеет вид .
Тогда, используя определение передаточной функции, имеем , где "p" - значок производной ( ).
Далее получим:
В разностном виде уравнение можно записать как (Yi+1 - Yi)*T+Yi*dt = k*Xi*dt. Или выразив настоящее через прошедшее Yi+1 = А* Xi +В* Yi. Здесь А и В весовые коэффициенты. А указывает на вес компоненты Х, определяющей влияние внешнего мира на систему, В указывает на вес Y, определяющей память системы, влияние на ее поведение истории.
В частности, если В=0, то Yi+1 = А* Xi и мы имеем дело с безинерционной системой, мгновенно реагирующей на входной сигнал Y=k*X и увеличивающей его в k раз. Если В=0.5, то нетрудно получить, что при постоянном входном сигнале Х, Yi+1 = А* Xi +0.5* Yi = А* Xi +0.5( А* Xi-1 +В* Yi-1) = ... = А*(1+0.5+0.52+...+0.5n)*Хi-n+0.5n+1*Yi-n = 2*A*Xi-n = k*Xi-n или, изображая на графике, получим затухающую экспоненту. Y стремится к значению входного сигнала X, умноженному на коэффициент усиления k.
Если еще усилить влияние прошлого B=1, то система начнет интегрировать саму себя (выход подан на вход системы)
Yi+1 = А* Xi + Yi добавляя все время входной сигнал, что соответствует экспоненциальному неограниченному росту выходного сигнала. По смыслу это соответствует положительной обратной связи. При B=-1, имеем модель Yi+1 = А* Xi - Yi по смыслу соответствующую отрицательной обратной связи. При определении модели требуется найти неизвестные коэффициенты k и T.
Рассмотрим звено второго порядка.
Звено второго порядка имеет три параметра.
Характеристика: плавный выход из нуля, точка перегиба и бесконечное продвижение к установившемуся состоянию.
Модель - это материальный или мысленно представляемый объект, замещающий в процессе изучения объект-оригинал, и сохраняющий значимые для данного исследования типичные его черты. Процесс построения модели называется моделированием.
Процесс моделирования состоит из трех стадий - формализации (переход от реального объекта к модели), моделирования (исследование и преобразования модели), интерпретации (перевод результатов моделирования в область реальности).
Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких - либо свойств. Модель - результат отображения одной структуры на другую.
Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.
Познавательная модель - форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.
Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.
Инструментальная модель - является средством построения, исследования и/или использования прагматических и/или познавательных моделей.
Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.
По уровню, "глубине" моделирования модели бывают эмпирические - на основе эмпирических фактов, зависимостей, теоретические - на основе математических описаний и смешанные, полуэмпирические - использующие эмпирические зависимости и математические описания.
Математическая модель М описывающая ситему S (x1,x2,...,xn; R), имеет вид: М=(z1,z2,...,zm; Q), где ziÎZ, i=1,2,...,n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы и Z - множеством описаний, представлений элементов и подмножеств X, соответственно.
Основные требования к модели: наглядность построения; обозримость основных его свойств и отношений; доступность ее для исследования или воспроизведения; простота исследования, воспроизведения; сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.
Проблема моделирования состоит из трех задач: построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей); исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей); использование модели (конструктивная и конкретизируемая задача).
Модель М называется статической, если среди xi нет временного параметра t. Статическая модель в каждый момент времени дает лишь "фотографию" сиcтемы, ее срез.
Модель - динамическая, если среди xi есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Модель - дискретная, если она описывает поведение системы только в дискретные моменты времени.
Модель - непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.
Модель - имитационная, если она предназначена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров xi модели М.
Модель - детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).
Можно говорить о различных режимах использования моделей - об имитационном режиме, о стохастическом режиме и т. д.
Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С: М=.
Свойства любой модели таковы:
конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны; упрощенность: модель отображает только существенные стороны объекта; приблизительность: действительность отображается моделью грубо или приблизительно; адекватность: модель успешно описывает моделируемую систему; информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.
Жизненный цикл моделируемой системы:
· Сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
· Проектирование структуры и состава моделей (подмоделей);
· Построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
· Исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
· Исследование адекватности, устойчивости, чувствительности модели;
· Оценка средств моделирования (затраченных ресурсов);
· Интерпретация, анализ результатов моделирования и установление некоторых причинно - следственных связей в исследуемой системе;
· Генерация отчетов и проектных (народно - хозяйственных) решений;
· Уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью моделирования.
Одним из основополагающих принципов моделирования сложных систем является принцип множественности моделей, заключающийся, с одной стороны, в возможности отображения многих различных систем и процессов с помощью одной и той же модели и, с другой стороны, в возможности представления одной и той же системы множеством различных моделей в зависимости от целей исследования. Использование этого принципа позволяет отказаться от подхода, когда для каждой исследуемой системы разрабатывается своя модель, и предложить новый подход, при котором разрабатываются абстрактные математические модели разного уровня (в основном базовые и локальные), используемые для исследования систем различных классов. При этом задача моделирования сводится к грамотной параметризации моделей и интерпретации полученных результатов.
Цель представляет собой сложное сочетание различных противоречивых интересов. Цель является системообразующим, интегрирующим фактором, объединяющим отдельные предметы и процессы в целостность, в систему. Это объединение происходит, исходя из того, что разрозненные предметы далеко не всегда могут служить достаточными средствами для достижения целей человека. А в объединенном виде они приобретают новое, системное, интегральное качество, которое является достаточным для реализации целей.
Система есть средство достижения цели.
Первое определение системы дополняется вторым, характеризующим ее внутреннее строение.
Общее определение системы формулируется следующим образом: «Системой называется совокупность взаимодействующих между собой элементов, выделенных из окружающей среды с определенной целью».
Проблемой называется ситуация, характеризующаяся различием между необходимым (желаемым) выходом и существующим выходом. Выход является необходимым, если его отсутствие создает угрозу существованию или развитию системы. Существующий выход обеспечивается существующей системой. Желаемый выход обеспечивается желаемой системой. Проблема есть разница между существующей и желаемой системой. Проблема может заключаться в предотвращении уменьшения выхода или же в увеличении выхода. Условие проблемы представляет существующую систему («известное»). Требование представляет желаемую систему.
18. «Черный ящик». Модель, свойства, трудности построения модели. Условия полезности модели «черного ящика»Построение модели "черного ящика" может быть сложной задачей из-за множественности входов и выходов системы (это обусловлено тем, что всякая реальная система взаимодействует с окружающей средой неограниченным числом способов). При построении модели из них надо отобрать конечное число. Критерием отбора является целевое назначение модели, существенность той ли иной связи по отношению к этой цели. Здесь, конечно, возможны ошибки, как раз не включенные в модель связи (которые все равно действуют) могут оказаться важными. Особое значение это имеет при определении цели, т.е. выходов системы. Реальная система вступает во взаимодействие со всеми объектами окружающей Среды, поэтому важно учесть все наиболее существенное. В результате главная цель сопровождается заданием дополнительных целей.
Пример: автомобиль не только должен перевозить определенное количество пассажиров или иметь необходимую грузоподъемность, но и не создавать слишком сильного шума при движении, иметь не превышающую норму токсичность выхлопных газов, приемлемый расход топлива, ... Выполнение только одной цели недостаточно, невыполнение дополнительных целей может сделать даже вредным достижение основной цели.
Модель черного ящика иногда оказывается единственно применимой при изучении систем.
Пример: исследование психики человека или влияние лекарства на организм мы воздействуем только на входы и делаем выводы на основании наблюдений за выходами в сигнал времени для пользователя, т.к. каждые часы показывают состояние своего датчика, то их показания постепенно расходятся. Выход состоит в синхронизации всех часов по показаниям некоего эталона времени (сигналы "точного времени" по радио). Включать эталон в состав часов как системы или рассматривать каждые часы как подсистему в общей системе указания времени?
19. Модель свойства системы. Элемент, подсистем, причины построения разных моделей разными экспертамиСистема есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как единое целое.
Свойство, которое возникает из соединения частей – есть главный признак, сущность, суть явления. Понятие о явлении – это, в первую очередь, представление о сущности явления, о главном признаке явления, о свойстве порожденном в данной системе.
Например, телевизоры и автомобили бывают разными: маленькими и большими, хорошими и не очень, собранными по разным схемам из разных деталей. Но все они обладают некоторым отличительным свойством: телевизор – это явление, которое принимает телесигналы и воспроизводит телеизображение, а автомобиль – это “повозка, которая сама ездит”.
Составить понятие о явлении, значит: указать на существование явления – выделить явление, различить его; показать устройство явления; доказать взаимосвязи этого явления с другими, т.е. определить место этого явления в иерархии явлений.
Иерархия, вложенность явлений возникает оттого, что в явлениях – надсистемах задействуются свойства явлений-подсистем, порожденные их целостностью. Всякое свойство явления порождается на некотором уровне иерархии явлений, поэтому изучая явления необходимо различать свойства, унаследованные от составляющих частей и свойства, порожденные целостностью явления.
Поскольку каждое свойство, всякая сущность порождается на своем уровне иерархии явлений, то нет смысла искать свойства на более низких уровнях – их там еще нет. Так же бессмысленно изучать свойства на более высоких уровнях – там свойства могут быть поглощены и включены в состав других явлений-систем.
Кроме линейной, иерархической упорядоченности есть и другие ее виды. Однако, несмотря на это, для овладения всяким свойством явления необходимо понять устройство того уровня иерархии, на котором порождаются интересуемые свойства явлений. В этом состоит суть системного подхода к анализу явлений.
Сложность явлений, возникающих на каждом уровне иерархии, ограничена. Любое явление, порожденное на данном уровне иерархии, усторено на сочетании некоторых из 7 принципов. Это принципы методологии познания.
Количественная характеристика функционального свойства называется функциональным ПАРАМЕТРОМ.
Например, составляющие части явления воздействуют друг на друга по контуру связей: в автомобиле топливная система подает в двигатель горючую смесь, а двигатель создает вращающее усилие на валу.
Двигатель – это подсистема автомобиля, которая порождает вращающее усилие. Совокупность деталей двигателя – это носитель явления, порождающего вращающее усилие, а взаимодействие между деталями – это контур связей деталей двигателя.
Поскольку явления независимы от своих носителей, то в двигателе можно заменить все детали, а в автомобиле один двигатель заменить на другой, также порождающий вращающее усилие на валу.
Итак, внутреннее устройство явления, архитектура системы – это совокупность функциональных свойств составляющих частей и структуры связей между ними.
20. Модель структуры системы. Условия использования, определение «структуры системы», «отношения», «свойство». Взаимосвязь понятий «отношения» и «свойства». Второе определение системыМодели черного ящика и состава недостаточно во многих случаях. Необходимо знать связи между элементами и подсистемами, или отношения. Совокупность необходимых или достаточных для достижения цели отношений между элементами называется структурой системы. Между реальными объектами, включенными в систему, существует огромное (может быть бесконечное) число связей. При определении модели структуры рассматривается только конечное число связей, которые существенны по отношению к рассматриваемой цели.
Пример: при расчете механизма не учитывают силу взаимного притяжения деталей друг к другу, но вес деталей учитывается обязательно.
Когда речь идет о связи, отношении, то в нем участвует не менее двух объектов. Свойством называют некий атрибут одного объекта. Но свойство выявляется в процессе взаимодействия объекта с другими объектами, т.е. при установлении некоторого отношения.
Пример: мяч красного цвета, но это обнаруживается при наличии источника белого цвета и приемника-анализатора света. Свойство - свернутое отношение. Гипотеза: это утверждение справедливо для всех свойств.
Второе определение системы: "Система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с нею как целое".
21. Структурная схема системы «белый ящик». Графы
Второе определение системы: "Система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с нею как целое". Это определение охватывает модели черного ящика, состава и структуры. Оно называется структурной схемой системы (белый ящик).
Пример: структурная схема часов.
Абстрагирование от содержательной стороны структурных схем приводит к схеме, в которой обозначается только наличие элементов и связей между ними. В математике такой объект называется графом. (graph - диаграмма, график, граф). В графе различают вершины (им соответствуют элементы) и ребра (им соответствуют связи). Если связи не симметричные, то их обозначают ребрами со стрелками (дуга) и граф называется ориентированным, иначе - неориентированный. Можно отражать различия между элементами и связями, приписывая числовые характеристики ребрам (вес ребра - взвешенный граф) или раскрывать вершины и ребра (раскрашенный граф). Различают два типа динамики системы:
- функционирование - процессы, происходящие в системе, стабильно реализующей фиксированную цель (часы, городской транспорт, кинотеатр, телевизор, ...);
- развитие - изменение системы при изменении ее целей. Существующая структура системы должна измениться (а иногда и ее состав) для обеспечения новой цели.
Динамические модели также могут быть построены в виде черного ящика, модели состава (перечень этапов в последовательности действий) или модели структурной схемы (например, в виде сетевого графика при описании некоторого производственного процесса). Формализация понятия динамической системы осуществляется путем рассмотрения соответствия между множеством возможных значений входов X, выходов Y и упорядоченным множеством моментов времени T
T->X; T->Y; Tэt, Tэx, x=x(t), y=y(t).
Модель черного ящика - это совокупность двух процессов {x(t)}, {y(t)}. Даже если считать, что y(t)=F(x(t)), то в модели черного ящика преобразование F неизвестно.
22. Динамические модели системы. Функционирование и развитие
Объектная модель представляет статическую структуру проектируемой системы (подсистемы). Однако знания статической структуры недостаточно, чтобы понять и оценить работу подсистемы.
Необходимо иметь средства для описания изменений, которые происходят с объектами и их связями во время работы подсистемы. Одним из таких средств является динамическая модель подсистемы. Она строится после того, как объектная модель подсистемы построена и предварительно согласована и отлажена. Динамическая модель подсистемы состоит из диаграмм состояний ее объектов и подсистем.
Динамические модели используются для оценки явлений в развитии.
Динамическая модель системы состоит из диаграмм состояний ее объектов и подсистем.
Текущее состояние объекта характеризуется совокупностью текущих значений его атрибутов и связей. Во время работы системы составляющие ее объекты взаимодействуют друг с другом, в результате чего изменяются их состояния. Единицей влияния является событие: каждое событие приводит к смене состояния одного или нескольких объектов в системе, либо к возникновению новых событий. Работа системы характеризуется последовательностью происходящих в ней событий.
Функционирование (и развитие) системы возможно если в своем составе система имеет:
1. "Элементы" - подсистемы;
2. Единую "Управляющую структуру" - системообразующий фактор;
3. Возможность обмена со средой (внутри системы и внутри ее) веществом, энергией, информацией.
Функционирование сформировавшейся системы происходит на двух уровнях:
1. Управление использует фикции;
2. Элемент (подсистема представленная как "целое") являются фантомом и использует "данности".
Данное - это нечто, существующее без нашего содействия как факт.
Факт (от лат. factum - сделанное, свершившееся) - 1) событие; фактический - действительный.
2) сделанное, совершившееся; находящаяся перед нами действительность, то, что признается реально существующим.
Таким образом переживая События-Факты Элемент изменяется.
Управляющая структура получает сигнал о том что элемент изменился.
Таким образом, мы имеем:
Элемент – это
Событие-Факт изменение Сигнал
Управляющая структура – это
Сигнал прием сигнала определение характеристик сигнала определение значимости сигнала Понятие
Фактически здесь мы наблюдаем переход
Событие-Факт Сигнал Понятие
Таким образом
Управляющая структура - это одна реальность (Понятия), а Элемент (подсистема представленная как "целое") реальность другая (Событие-Факт).
Но Переход между реальностями совершает только СИГНАЛ (от латинского signum – знак), знак, несущий сообщение (информацию) о каком–либо событии, состоянии объекта наблюдения либо передающий команды управления, оповещения и т.д.
Таким образом, Функциональная система - это:
- Элемент входящий Сигнал Событие-Факт исходящий Сигнал- Управляющая структура входящий Сигнал Понятие исходящий Сигнал
Но так как "Элемент" - это в свою очередь так же "Система" то картина Функциональной системы сложней:
Управляющая структура формирует исходящий Сигнал на основе Понятия, а Элемент (подсистема) формирует исходящий Сигнал на основе События-Факта.
Следовательно системе, для правильного функционирования, необходимы
- Сигнал, правильно отражающий Событие-Факт;
- Механизм правильного формирования Понятия.
23. Преобразование формальной модели в содержательную. Рекомендации по достижению полноты модели
При всем невообразимом многообразии реальных систем принципиально различных типов моделей систем очень немного: модель типа "черный ящик", модель состава, модель отношений, а также их разумные сочетания и прежде всего объединение всех трех моделей, т.е. структура системы. Это относится как к статическим моделям, отображающим фиксированное состояние системы так и к динамическим моделям, отображающим характер временных процессов, которые происходят с системой. Можно сказать, что структура ("белый ящик") получается как результат "суммирования" моделей "черного ящика", состава и отношений. Все указанные типы моделей являются формальными, относящимися к любым системам и, следовательно, не относящимися ни к одной конкретной системе. Чтобы получить модель заданной системы, нужно придать формальной модели конкретное содержание, т.е. решить, какие аспекты реальной системы включать как элементы модели избранного типа, а какие — нет, считая их несущественными. Этот процесс обычно неформализуем, поскольку признаки существенности или несущественности в очень редком случае удается формализовать (к таким случаям относится, например, возможность принять в качестве признака существенности частоту встречаемости данного элемента в различных подобных, т.е. одинаково классифицируемых, системах). Столь же слабо формализованными являются признаки элементарности и признаки разграничения между подсистемами.
В силу указанных причин, процесс построения содержательных моделей является процессом творческим. Тем не менее интуиции эксперта, разрабатывающего содержательную модель, немало помогают формальная модель и рекомендации по ее наполнению конкретным содержанием. Формальная модель является "окном", через которое эксперт смотрит на реальную систему, строя содержательную модель.
В процессе построения содержательных моделей систем отчетливо прослеживается необходимость использования диалектики. В этом процессе главной является задача создания полной модели. Общие рекомендации по достижению полноты вытекают из основных положений диалектики:
- необходимо стремиться учесть все существенные факторы, влияющие на рассматриваемое явление; поскольку такая существенность не всегда очевидна, лучше включить в модель несущественный элемент, чем не включить существенный;
- одним из необходимых признаков полноты модели является наличие в ней противоречивых элементов; следует уделить специальное внимание этому моменту: например, при перечислении выходов надо включать в перечень не только желательные целевые выходы (связи, продукцию и т.п.), но и нежелательные (отходы, брак, и т.п.);
- как бы ни были обширны наши знания о данном явлении, реальность богаче моделей — в ней всегда есть неизвестные факторы; чтобы не упустить из виду возможность чего-то существенного, но пока неизвестного, рекомендуется включать в модель неявные "запасные", неконкретизированные элементы (типа "все остальное", "что-то еще") и на различных стадиях системного анализа обращаться к этим элементам, как бы ставя перед собой вопрос: не пора ли дополнить модель еще одним явным элементом? Эти рекомендации, конечно, не исчерпывают всех возможностей: в арсенал искусства моделирования входит много научно обоснованных методов и эмпирических эвристик.
24. Искусственные и естественные системы
В зависимости от своего происхождения выделяют естественные системы (например, климат, почва) и сделанные человеком.
Искусственные системы - системы, создаваемые человеком. При возникновении проблемной ситуации происходит осознание потребности, затем выявление проблемы, потом формулирование цели. Цель - субъективный образ (абстрактная модель) желаемого состояния среды, которое решило бы возникшую проблему. В процессе деятельности, направленной на достижение поставленной цели происходит отбор из окружающей среды объектов, свойства которых можно использовать для достижения цели и объединение этих объектов подходящим образом. Это объединение объектов будем называть системой. Таким образом, система есть средство достижения цели. При этом, для достижения одной цели могут быть созданы разные системы и одна и та же система может быть использована для достижения разных целей, т.е. соответствия между целями и системами. Но из определения вытекает: "без проблемы нет системы" и "система есть тень цели на среде".
Естественные системы.
Понятие система применяется и к реальным природным объектам, обладающим естественной структурированностью, взаимосвязанностью отдельных частей и элементов. Это признаки системы. Но по первому определению системы - это средство достижения цели. О каких же целях может идти речь применительно к природным объектам?
Один из вариантов - существование высшего разума, который и определяет целесообразность природы. Но такой разум - это тоже система, и возникает вопрос о его "создателе" и цели создания и т.д. Наука не нуждается в гипотезе о существовании бога. Мир состоит их структурированных объектов. Всякая система - это объект, но не всякий объект является системой.
Пример 1: Лес - природный объект. Становится системой (частью системы), когда его свойства используются для конкретных целей. Например, при постройке нового района, часть леса сохранена для украшения, создания микроклимата, как место отдыха и, следовательно, становится частью системы "город". Или, участок леса отведен леспромхозу для разработки и становится элементом системы "леспромхоз". Сам по себе лес не имеет целей: выполнить план по лесозаготовкам или украсить город, но он имеет свойства, знание и использование которых дает возможность соответствующим системам достичь эти цели. Лес имеет бесконечно много свойств, которые могут быть познаны и потенциально могут быть использованы для создания систем. Такой подход означает, что человек если и может добиться какой-то цели, то не любым образом, а только действуя в соответствии с законами природы (их нельзя нарушать - их можно только использовать). Цели, противоречащие природным закономерностям, недостижимы.
Пример 2: Вечный двигатель не может быть создан, т.к. это противоречит закону сохранения энергии.
Пример 3: Создание искусственно разума - это цель, достижение которой не исключено (неизвестные законы, запрещающие это), но не гарантировано (способ достижения цели пока не известен).
Цель искусственной системы - идеальный образ (модель) желаемого результата деятельности системы (что должно бы быть). Этот идеальный образ можно назвать субъективной целью. Реально система и среда окажутся в некотором реализовавшемся состоянии (оно может совпадать полностью, частично, или вообще не совпадать). По отношению к прошлому моменту это состояние можно назвать объективной целью системы (т.е. будущее реальное состояние системы). Субъективные цели ставит человек. Объективные цели реализует природа. Таким образом, любой объект можно рассматривать как систему.
25. Субъективные и объективные цели. Классификация системРазличают физические и абстрактные системы. Физические системы состоят из людей, изделий, оборудования, машин и прочих реальных или искусственных объектов. Им противопоставлены абстрактные системы. В последних свойства объектов, существование которых может быть неизвестным, за исключением их существования в уме исследователя, представляют символы. Идеи, планы, гипотезы и понятия, находящиеся в поле зрения исследователя, могут быть описаны как абстрактные системы.
В зависимости от своего происхождения выделяют естественные системы (например, климат, почва) и сделанные человеком.
По степени связи с внешней средой системы классифицируют на открытые и закрытые.
Открытые системы — это системы, которые обмениваются материально-информационными ресурсами или энергией с окружающей средой регулярным и понятным образом.
Противоположностью открытым системам являются закрытые.
Закрытые системы действуют с относительно небольшим обменом энергией или материалами с окружающей средой, например химическая реакция, протекающая в герметически закрытом сосуде. В деловом мире закрытые системы практически отсутствуют и считается, что окружающая среда является главным фактором успехов и неудач деятельности различных организаций. Однако представителей различных школ управления первых 60 лет прошлого века, как правило, не волновали проблемы внешней среды, конкуренции и всего остального, что носит внешний для организации характер. Подход с точки зрения закрытой системы предполагал то, что следует делать, чтобы оптимизировать использование ресурсов, принимая во внимание только происходящее внутри организации.
Реалии окружающего мира заставили исследователей и практиков прийти к выводу, что любая попытка понять социально-экономическую систему, рассматривая ее закрытой, обречена на провал. Более того, реальность отнюдь не является ареной, на которой господствует порядок, стабильность и равновесие: главенствующую роль в окружающем нас мире играет неустойчивость и неравновесность. С этой точки зрения системы можно классифицировать на равновесные, слабо равновесные и сильно неравновесные. Для социально-экономических систем состояние равновесия может наблюдаться на относительно коротком промежутке времени. Для слабо равновесных систем небольшие изменения внешней среды дают возможность системе в новых условиях достичь состояния нового равновесия. Сильно неравновесные системы, которые весьма чувствительны к внешним воздействиям, под влиянием внешних сигналов, даже небольших по величине, могут перестраиваться непредсказуемым образом.
По типу составных частей, входящих в систему, последние можно классифицировать на машинные (автомобиль, станок), по типу «человек — машина» (самолет — пилот) и по типу «человек—человек» (коллектив организации).
По целевым признакам различают: одноцелевые системы, то есть предназначенные для решения одной единственной целевой задачи и многоцелевые. Кроме того, можно выделить функциональные системы, обеспечивающие решение или рассмотрение отдельной стороны или аспекта задачи (планирование, снабжение и т. п.).
Хотя основные положения системного анализа являются общими для всех классов систем, специфика их отдельных классов требует особого подхода при их анализе. Ярко выраженная специфика социально-экономических систем по отношению к биологическим и тем более техническим обусловлена в первую очередь тем, что неотъемлемой частью первых является человек. Поэтому применительно к этому классу систем анализ должен осуществляться с учетом потребностей, интересов и поведения человека.
26. Схема функционирования управляемой моделиОбщая схема функционирования системы представлена на рис. 1. В ней можно выделить отдельно систему S, подлежащую управлению U, и управляющую систему, которая это управление вырабатывает. Подчеркнем, что для выработки управления U требуется предсказание его последствий, т.е. нужна модель всей ситуации, с помощью которой управляющая система определяет какое управляющее воздействие нужно подать на вход системы. Это представлено на рис. 1, где схема изображена еще раз внутри управляющего блока.
Процесс управления системой определяется типом системы и тем, является ли управляющий блок внешним по отношению к системе или входит в нее.
Можно выделить пять основных способов управления, которые различаются в зависимости от степени известности траектории, приводящей систему к цели, и возможности управляющей системы удерживать управляющую систему на этой траектории.
Первый, простейший случай имеет место тогда, когда нужная траектория известна точно, а следовательно, априори известно и правильное управление Uo (t). В этом случае можно управлять, не учитывая развитие событий. Примерами такого типа управления является стрельба из ружья, работа компьютера по жесткой программе и т.п. Часто оказывается, что процессы на неуправляемых входах Vo (t) отличаются от ранее предполагаемых, и система сходит с нужной траектории.
Второй тип управления - регулирования. Он заключается в том, что, наблюдая текущую траекторию Y(t) и находя разность Y(t) - Y(to), можно определить дополнительное управляющее воздействие, которое возвратит систему на нужную траекторию. Примером регулирования является управление, осуществляемое операторами-станочниками, автопилотом и т.п.
Следующие способы управления возникают в связи с необходимостью управления в условиях, когда либо невозможно задать траекторию системы на весь период времени, либо отклонение от нее настолько велико, что вернуться на нужную траекторию невозможно. В этом случае необходимо спрогнозировать текущую траекторию Y(t) на будущее и определить, пересечет ли она целевую область Y.
S
V1
Вход U S Выход
X V Y
Рис. 1 Схема функционирования управляемой системы
Управление по параметрам (третий тип управления) состоит в подстройке параметров системы до тех пор, пока такое пересечение не будет обеспечено. Например, этому классу принадлежит работа пилотов, адаптивные и автоматизированные системы управления и т.п.
27. Классификация систем по способам управленияПервый уровень классификации по признаку: управляющий блок внутри системы или вне (третий класс - управление, разделено: вне и внутри). На втором уровне: первый тип отражает ситуацию, когда траектория, ведущая систему к цели известна точно, а значит и заранее известно правильное управление их. (Работа ЭВМ по программе, использование телефона, ...). Чаще под влиянием неуправляемых входов или неучтенных факторов система сходит с траектории. Пусть y(t) - траектория, которую мы наблюдаем; y0 (t) - "нужная" траектория; по значениям y(t)- y0 (t) определяется дополнительное к программному управление, которое вернет систему на нужную траекторию. Это называется регулирование (автопилот, оператор-станочник). Если "нужная" траектория неизвестна или уклонена настолько больше, что возврат невозможен, то прогнозируется поведение текущей траектории и подстраиваются параметры системы так, чтобы траектория пересекла целевую область y* (адаптация живых организмов к изменяющимся условиям жизни, работа водителей и пилотов).
Иногда управление параметрами не позволяет достичь целевой области, т.е. цель для данной системы не достижима. Выход - в изменении структуры системы, в поисках такой, при которой возможно попадание в целевую область. Такое управление называют структурной адаптацией (ГАП, сельхозмашины со сменными орудиями, мутации организмов в ходе естественного отбора, ...). Может быть и так, что какая-то цель недостижима и при структурной адаптации, тогда необходим отказ от старой цели и задание новой - управление (адаптация) по целям.
Для достижения нужного управления проводится отбор среди возможных управлений путем их сравнения по каким-то критериям, оценивающим последствия каждого из них. Для этого нужна модель управляемой системы. Для ее создания, актуализации (запуска в работу) и поддержания в процессе функционирования необходимы ресурсы (чтобы получать решения нужного качества и к нужному моменту времени).
... Все можно вполне исправить и так. 6. Заключение. Проделанная работа показывает, что приведенная структура соответствует поставленным в дереве целей задачам. Это наглядно доказывает, что применение системного анализа вполне оправдано – он помогает решить на первый взгляд неразрешимые задачи, как, например, эта. Другие не менее важные проблемы также решаемы силами системного анализа. Руководителю ...
... затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. 3. Практическая часть. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач I. Общая информация: 1. ООО "Компьюсервис" 2. Дата создания 01.07. 2005г 3. Московская ...
... подход, этапы системного анализа.[5] Представляется, что в качестве основного процедурного элемента можно рассматривать этапы (процедуры) системного анализа, базирующиеся на целях и принципах системного анализа. 1. Методологические принципы системного анализа Целью анализа системы управления является: · детальное изучение системы управления для более эффективного использования и принятия ...
... ; в) теоретический системный анализ. Совокупность только что указанных этапов с их элементами и взаимосвязями может рассматриваться как структура системного анализа и моделирования процессов в техносфере, основанная преимущественно на применении гибкой системной методологии прогнозирования и перераспределения техногенного риска. Самым первым и довольно важным этапом системного исследования ...
0 комментариев