2. Исторический аспект
2.1 Экономико-математические методы
Внимание к использованию математики при анализе экономических процессов было проявлено в России ещё в 19 веке. Так, крупнейший экономист того времени Н.Г. Чернышевский, анализируя трактат Д.С. Милля "Основы политической экономии", пишет: "Мы видим уже много примеров того, какими приемами пользуется политическая экономия при решении своих задач. Эти приемы математические. Иначе и быть не может, потому что предмет науки - количества, подлежащие счету и мере, понимаемые только через измерения и вычисления". Впоследствии Россия прошла большой, трудный и противоречивый путь в использовании экономико-математических методов и моделей. В настоящее время Россия переживает новую волну широкого интереса к экономико-математическим исследованиям и практическому применению их результатов. Это связано с изменением экономических отношений. С формированием в России новых экономических условий на смену достаточно детерминированной экономической системе (с точки зрения затрат, но не результатов) приходит более сложная, вероятностная, динамическая система. Поэтому особое значение приобретают методы стохастического анализа, аппроксимации задачи и другие, характеризующие весь набор экономико-математического моделирования реальных процессов в экономике.
Модель управления запасами
Теория управления запасами относится к числу наиболее молодых отраслей исследования операций, хотя отдельные результаты ее получены достаточно давно. Впервые подобная задача применительно к определению резервных денежных фондов была математически сформулирована Эджвортом Ф. в 1888 г. В начале XX века появился целый ряд статей по определению наиболее экономичного объема поставки марки материального ресурса на предприятие.
Вторая мировая война дала мощный толчок развитию количественных методов выработки решения в сложной обстановке. Зародилась новая отрасль знания – исследование операций, в корне изменилось отношение к применению математики в экономике и в военном деле. Важнейшей областью приложения методов исследования операций оказалось снабжение военных и торгово-промышленных организаций, оптимизация которого была немыслима без рационального управления запасами на складах. Как сообщалось в работах Буффа Е., не редкость когда 25 и более процентов капитала промышленных фирм вложены в запас. При этом абсолютная величина стоимости запасов достигает таких величин (на 01.01.1960 в “Дженерал Электрик” – 800 млн. долларов, в “Дженерал Моторс” – 2 млрд.), что даже небольшой процент снижения запасов оборачивается ощутимой выгодой. Естественно, что фирмы щедро субсидировали исследования по оптимизации запасов и способствовали быстрому внедрению их результатов в практику.
Основы современной теории управления запасами – постановка задачи, анализ влияющих на решение факторов, способ учета неопределенности в спросе – были сформулированы в работах Эрроу К., Гарриса В., Маршака С. и Дворецкого А На русском языке теория управления запасами рассматривалась в работах Е.В. Булинской, Дж. Букана, Э. Кенингсберга, Ю.И. Рыжикова, В.А. Лотоцкого, А.И. Орлова, А.А. Колобова, И.Н. Омельченко и многих других.
В 1953 г. выходит первая монография Вайтина Т. по управлению запасами, в которой основные идеи теории иллюстрировали на пуассоновском потоке требований. Ее автор особое внимание уделил роли складов в матричных экономических моделях типа леонтьевской, а также их значению в системе национальной обороны США. Глубокий математический анализ основных вариантов задачи управления запасами был проведен в сборнике статей под редакцией Карлина С. и др. Их основные результаты относятся к исследованию структуры оптимальных стратегий и нахождению случаев, когда оптимальна простейшая стратегия с критическим уровнями запасов. В монографии Вагнера Х. рассматриваются способы получения стационарных распределений избытков и недостач запасов при дискретном спросе, а также нахождения нижнего критического уровня запасов. Значительный акцент сделан на методах контроля за осуществлением оптимальных стратегий в низшем звене управления со стороны высшего звена.
В США выпущена серия книг по управлению запасами, предназначенных для менеджеров промышленных предприятий. Некоторые из них, например, Бариша Н., в основном описательные и сводятся к изложению методики анализа складских запасов и складского хозяйства. Другие написаны на инженерном уровне и основное внимание уделяют получению практически полезных расчетных зависимостей.
Задачи линейного программирования
С именем известного советского математика Леонида Витальевича Канторовича (1912-1986) связано использование методов линейного программирования. Эта отрасль прикладной математики появилась как результат анализа ряда проблем организации и планирования производства, связанного с рациональным раскроем материалов, когда был сформулирован для их описания новый класс условно-экстремальных задач с ограничениями в виде неравенств. Л.В. Канторович предложил методы решения таких задач. Впоследствии эта область и получила название "линейного программирования".
Появление методов линейного программирования было подготовлено всем ходом развития математики. В частности, для методов линейного программирования основой явилось развитие методов линейной и матричной алгебры. Однако именно Л.В. Канторович ещё в 1939 году заложил математические основы методов линейного программирования. Основные позиции были сформулированы в его работе "Экономический расчет наилучшего использования ресурсов". Но окончательное формирование этих методов в специфическую отрасль прикладной науки связано с утверждением кибернетики как науки. Сам термин "программирование" был введен лишь в 1949 году, а так называемый симплексный метод, выражающий существо методов линейного программирования, был разработан лишь в 1951 году. Приоритет Л.В. Канторовича в этом направлении признан во всем мире. В 1975 году Л.В. Канторовичу совместно с американским экономистом Т. Кумпансом была присуждена Нобелевская премия по экономике за разработку теории оптимального использования ресурсов.
Л.В. Канторовичу удалось построить разветвленную экономическую теорию на базе методов линейного программирования, разработать основы математической теории. Он внес фундаментальный вклад в экономико-математическую науку, открыв две области применения линейного программирования: транспортная задача и методы рационального раскроя материалов в промышленности. Одним из крупнейших представителей экономико-математического направления науки был Виктор Валентинович Новожилов (1892-1970). Он долгие годы работал в Санкт-Петербургском государственном техническом университете, который в то время назывался Ленинградский политехнический институт. Здесь он начал работать в 1922 году. С 1938 по 1951 год являлся заведующим кафедрой экономики машиностроения. В конце 50-х годов В.В. Новожилов получает широкое признание как один из лидеров экономико-математического направления. В его работах и ранее использовались математические модели, например, метод Лагранжа при анализе задач по оптимизации. Новые возможности для использования математических методов открыло использование методов линейного программирования.
В.В. Новожилов разработал принципы соизмерения затрат и результатов в экономике. Ведущим принципом решения такой задачи была выдвинута оптимальность. Во главу всякой капиталоемкой современной экономики ставится проблема согласования частных хозяйственных решений с требованиями общеэкономической оптимальности. В условиях ограниченности экономических ресурсов для каждого варианта решения должны учитываться не только прямые выгоды, связанные с определенным вариантом, и соответственное увеличение использования конкретного ресурса, но и потери, связанные с невозможностью использовать данный ресурс в альтернативном варианте. Эти неявные затраты должны включаться в затраты, связанные с реализацией первого варианта, уменьшая его фактическую доходность. В.В. Новожилов называет эти затраты "затратами обратной связи", аналогичные альтернативной стоимости в теории рыночной экономики.
Заслугой В.В. Новожилова стало обоснование идеи оптимального функционирования экономики на основе оптимальных цен и распределения ограниченных ресурсов (соизмерения затрат и результатов). Работы В.В. Новожилова являются примером глубокого теоретического обоснования в процессе использования математических методов, методов линейного программирования. Выдающуюся роль в развитии экономико-математического направления в России играет Василий Сергеевич Немчинов (1894-1964). Он отмечал, что роль экономико-математических методов возрастает по мере развития производства. С их помощью становится возможным нахождение оптимальных решений общеэкономических задач, а также целого ряда специальных экономических проблем, возникающих в промышленности, сельском хозяйстве, на транспорте и в других отраслях.
По мнению В.С. Немчинова, применение экономико-математических методов обеспечивает возможность выявления, изучения и прогнозирования сложных связей, возникающих в экономике. Эти методы позволяют, с одной стороны, производить сложные экономические расчеты и находить оптимальные варианты производственных программ и планов. С другой стороны, на основе методов математической статистики оценивать статистическую достоверность данных наблюдения, характеризовать взаимосвязи экономических параметров и находить распределение отклонений индивидуальных значений различных параметров от их средних значений. В.С. Немчинов рассматривал следующие основные направления развития экономико-математических методов. Он считал, что центральным направлением должна стать разработка математической методологии общественных оценок в системе расчетов, необходимых для составления оптимального плана развития экономики страны. В роли общественных оценок выступает целевая функция потребителя, обоснованные критерии рентабельности производства, система обоснованных цен. Вторым направлением является разработка балансовых моделей экономики, в частности межотраслевых и межрегиональных балансов производства и распределения продукции. В.С. Немчинов разработал алгоритм трансформации матрицы межотраслевого баланса в схему расширенного воспроизводства. При этом центральное место занимают такие понятия, как потенциал расширенного воспроизводства, представляющих собой объем накопления средств производства (элементов основного капитала). По сути, он оперирует понятиями сбережения и инвестиции. Анализируя реальное соотношение сбережений и инвестиций в современной экономике, В.С. Немчинов приходит к выводу, что эти величины практически никогда не совпадают друг с другом, что становится одной из причин несбалансированности экономического роста. В.С. Немчиновым была осуществлена трансформация межотраслевого баланса Великобритании за 1935 и 1950 гг. В схемы расширенного воспроизводства. Использованный В.С. Немчиновым метод трансформации матрицы межотраслевого баланса в схему расширенного воспроизводства представляет собой особый интерес, ибо он является по существу результатом комбинации метода агрегирования, или укрупнения информации, с методом статистической группировки. В этот период В.С. Немчинов уделяет большое внимание решению так называемых транспортных задач. Суть состоит в использовании экономико-математических методов для оптимизации транспортных потоков, выбора оптимального маршрута. Эта задача носит чисто прикладной характер. Впоследствии эта задача приобретает более широкий характер, как задача оптимизации плана производства и перевозок. Четвертое направление использования экономико-математических методов, по мнению В.С. Немчинова, представляет собой решение разнообразных технико-экономических задач. Здесь можно назвать нахождение оптимального плана использования производственных мощностей (например, загрузки станочного оборудования), рациональный раскрой промышленных материалов, оптимальное расположение промышленных объектов и прочее. Пятым направлением В.С. Немчинов считал дальнейшее развитие математической статистики и применение её методов к решению задач прогнозирования экономического развития. В целом, В.С. Немчинов играет большую роль в утверждении экономико-математических методов и расчетов в практике хозяйствования как в целях решения глобальных задач обеспечения сбалансированного экономического роста, так и прикладных, связанных с оптимизацией производственных программ и транспортных потоков. В более поздний период существенную роль в развитии экономико-математического моделирования играл Станислав Сергеевич Шаталин (1934-1996). Он развил методологию макроэкономического прогнозирования и программирования. Другой экономист - Н.Я. Петраков внес существенный вклад в использование математических методов для оценки экономической эффективности принимаемых решений, развивает теорию и методологию оптимизации функционирования экономики, обоснования цен на товары и услуги. Но весь приведенный перечень ученых-экономистов, внесших существенный вклад в развитие отечественной и мировой экономико-математической науки, является далеко не полным. Историческое развитие экономико-математической науки подтверждает то, что приоритет при решении многих современных вопросов принадлежит российской науке, внесшей существенный вклад в становление и развитие методов экономико-математического моделирования и анализа.
... , обладающими достаточными знаниями и опытом в области, к которой принадлежит ситуация принятия управленческого решениям Стабильность. По стабильности информация может быть переменной (текущей) и постоянной (условно-постоянной). Переменная информация отражает фактические количественные и качественные характеристики производственно-хозяйственной деятельности фирмы. Она может меняться для каждого ...
... - решение можно считать эффективным, если же результат ближе к нулю - то данное решение можно считать малоэффективным или не эффективным вообще. Таблица 1 Критерии для оценки качества управленческих решений N п/п Критерии Коэф. Показатели 1. Констатирующая часть 1,0 Приведение цели и причины решения 0 Отсутствие цели и причины решения, ибо плохое решение - это полное его ...
... государственного управления и права Кафедра государственного управления и политики К У Р С О В О Й П Р О Е К Т по дисциплине "Разработка управленческого решения" на тему: "__________________________________________________________" (название темы, в соответствии с заданием на курсовое проектирование) Выполнил (а) студент (ка) Специальности: "_________________________________________" ...
... затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. 3. Практическая часть. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач I. Общая информация: 1. ООО "Компьюсервис" 2. Дата создания 01.07. 2005г 3. Московская ...
0 комментариев