1.3      Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников

Для организации учебной деятельности учащихся начальных классов, направленной на эффективную подготовку к формированию представлений о функциональной зависимости должны выполняться следующие дидактические условия: наличие в курсе математики идей, непосредственно связанных с функциональными представлениями, таких как идея изменения, соответствия, закономерности и зависимости; наличие в содержании курса математики понятий, необходимых для осознанного усвоения понятия функции; создание проблемных ситуаций в процессе усвоения программного содержания; систематическое использование различных моделей (предметной, вербальной, символической, схематической и графической); использование учебных заданий, в основу которых положены приемы выбора, сравнения, преобразования и конструирования; организация целенаправленного наблюдения, сравнения, анализа и обобщения в процессе выполнения учебных заданий [4, с.110].

Для организации деятельности учащихся, направленной на формирование функциональных представлений и понятий, необходимых для восприятия и усвоения понятия «функция», целесообразно использовать учебные задания следующих видов: задания на тождественные преобразования числовых выражений (равенств) на основе смысла арифметического действия; на соотнесение предметной модели с числовым выражением (равенством); на соотнесение предметной, графической и символической моделей; на выявление закономерности; на установление соответствия между символическими моделями; на конструирование графической модели по заданной графической модели; на конструирование символической модели по заданной вербальной модели; на выбор символической модели, соответствующей вербальной модели; на конструирование числовых равенств по заданным условиям; на установление соответствия между символической и графической моделью; на выбор графической модели соответствующей символической модели; на преобразование на плоскости; на конструирование графической модели, соответствующей символической модели и т.д. [5, с.23].

Учебные задания, способствующие формированию функциональных представлений и понятий, необходимых для осознанного усвоения понятия функции, должны характеризоваться:

1) вариативностью;

2) неоднозначностью решений;

3) нацеленностью на формирование приемов умственной деятельности (таких, как анализ и синтез, сравнение, аналогия, классификация и обобщение);

4) отображением разнообразных закономерностей и зависимостей;

5) включенностью их в содержательную линию курса математики начальных классов [17, с.81].

На основе функциональных представлений разработаны учебные задания, направленные на их формирование:

1.         Задания на формирование представлений об изменении и зависимости: на изменение результата арифметического действия в зависимости от изменения его компонентов; на использование основного свойства дроби; на классификацию числовых выражений (равенств) на основе их результата арифметического действия; тождественные преобразования числовых выражений (равенств) на основе смысла арифметического действия; на преобразование числовых выражений; на преобразование дробных выражений; на конструирование символической модели по заданной вербальной модели и др.).

Например, «Чем похожи все пары выражений? Найди их значения:

а) 89 + 47 б) 57+29 в) 76+57

90 + 47 57+30 76+60

Сравни равенства в каждой паре и сделай вывод».

2.         Задания на формирование представления о закономерности, как правила, по которому записаны ряды чисел: на выявление закономерности.

Например, «Найди правила, по которым составлены ряды чисел:

а) 0,5; 0,05; 0,005; 0,0005; …;

б) 0,2; 0,4; 0,6; 0,8; …;

в) 0,12; 2,14; 4,16; 6,18; ….

Запиши в каждом ряду еще три числа по тому же правилу».

3.         Задания на формирование представления о соответствии: на соотнесение предметной, графической и символической моделей; на установление соответствия между символическими моделями.

Например, «Соедини с числом 5 те выражения, значения которых делятся на 5, если а делится на 5».



Эти учебные задания формулируются в основном на числовом материале, причем они усложняются и варьируются как по форме, так и по содержанию.

Решение задач на прямую и обратную пропорциональные зависимости посвящен решению текстовых задач на прямую и обратную пропорциональные зависимости арифметическим способом. Среди таких задач выделяются задачи, в которых числовые данные находятся в некотором отношении, что предполагает ещё один способ решения, представляющий интерес с точки зрения функциональной пропедевтики [36, с.105].

Кроме того, придать функциональный характер текстовым задачам можно с помощью дополнительных вопросов, направленных на изменение данных задачи, условия, вопроса, на соотнесение условия с различными выражениями и равенствами. Эти приемы помогают учащимся представить величины, рассматриваемые в задаче в движении, изменении, что позволяет формировать у учащихся функциональный стиль мышления.

На программном содержании курса математики начальных классов используются также учебные задания следующих видов:

1)         задания на соотнесение предметной модели с числовым выражением (равенством);

2)         задания на установление соответствия между символическими моделями;

3)         задания на конструирование графической модели по заданной графической модели;

4)         задания на конструирование символической модели по заданной вербальной модели;

5)         задания на выбор символической модели, соответствующей вербальной модели;

6)         задания на конструирование числовых равенств по заданным условиям;

7)         задания на установление соответствия между символической и графической моделью;

8)         задания на выбор графической модели, соответствующей символической модели;

9)         задания на преобразование на плоскости;

10)      задания на конструирование графической модели, соответствующей символической модели и т.д. [20, с.110].

Приведем примеры заданий:

1.         Задание на конструирование числовых равенств по заданным условиям:

Выбери два отношения, из которых можно составить верное равенство. Запиши это равенство:

1,5 : 2; 3 : 6; 4,5 : 8; 6 : 8; 15 : 10.

2.         Задание на конструирование графической модели, соответствующей символической модели:

Проверь, будут ли величины х и у прямо пропорциональными при данных значениях:

х 1 4 16 64 256
у 0,6 2,4 9,6 38,4 153,6

Если возникнут трудности при выполнении задания, то:

представь данную таблицу в таком виде:


и найди отношения соответствующих значений величин х и у.

3.         Задание на преобразование на плоскости:

Впиши пропущенные слова и числа, чтобы получились верные высказывания:

1)         точка А (3; 4) при перемещении вправо на 2 единичных отрезка перешла в точку В (…;…);

2)         точка L (5; -2) при перемещении______________на___единичных отрезков перешла в точку M (5; 2);

3)         точка Х (1; 1) при перемещении вверх на 3 и вправо на 6 единичных отрезков перешла в точку У (…;…);

4)         точка V (2; 3) при перемещении__________на___и___________ на___ единичных отрезков перешла в точку W (7; -2).

4. Задание на конструирование графической модели, соответствующей символической модели:

а) Выбери единичный отрезок и построй точки в координатной плоскости:

А (0,6; 0), В (0; ), С (0,1; 0,7), D , E , К .

б) Выбери единичный отрезок и построй точки в координатной плоскости:

А(600; 0), B(0; -300), C(100; 700), E(-500; -600), K(900; -400).

Все учебные задания, обладают следующими характеристиками: вариативностью; неоднозначностью решений; нацеленностью на формирование приемов умственной деятельности (таких, как анализ и синтез, сравнение, аналогия, классификация и обобщение); отображением разнообразных закономерностей и зависимостей; включенностью их в содержательную линию курса математики начальных классов [10, с.95].

Таким образом, рассмотрев теоретические основы формирования представлений о функциональной зависимости у младших школьников, мы пришли к выводу, что функциональная зависимость является одной из тех математических идей, которые способны объединить в единое целое все разделы математики, включенные в школьный курс. Функциональная зависимость отражает практическую направленность курса математики, взаимосвязь величин в естественнонаучных дисциплинах, а также формирует функциональное мышление школьников. Исходя из опыта обучения, известно, что понятие функции является абстрактным и довольно сложным для восприятия учащимися. Поэтому в процессе реализации данной линии необходимо усилить наглядность изучаемых объектов и понятий в рамках отведенного времени, предоставить учащимся возможность увидеть зависимость не только в виде статичной модели, но и в динамике, дать возможность учащимся непосредственно задавать, изменять и изучать функции при помощи интерактивных моделей, расширить систему задач при помощи упражнений, содержащих анимацию и элементы управления и т.д. Такому «живому» изучению функциональной зависимости может способствовать применение комплекса упражнений, направленных на формирование представлений о функциональной зависимости.

Следующая глава будет посвящена экспериментальной работе по формированию представлений младших школьников о функциональной зависимости.


Глава 2. Опытно-экспериментальная работа по формированию представлений о функциональной зависимости у младших школьников с применением комплекса упражнений

 

2.1 Диагностика уровней сформированности представлений младших школьников о функциональной зависимости

Для формирования представлений у младших школьников о функциональной зависимости на базе МОУ СОШ №31 города Ишима был проведен эксперимент.

В эксперименте приняли участие учащиеся 3 «А» (экспериментальная группа) и 3 «Б» (контрольная группа) классов в количестве по 20 человек в каждом классе. Список детей, участвующих в исследовании приведен в приложении 1.

Эксперимент состоял из трех этапов:

1 этап – констатирующий этап - диагностика уровня сформированности представлений о функциональной зависимости у младших школьников.

2 этап – формирующий этап - разработан и реализован комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

3 этап – контрольный этап - проведен анализ эффективности занятий с применением комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Для выявления уровня сформированности представлений о функциональной зависимости у младших школьников были выделены следующие функциональные умения:

1) строить график функции;

2) записывать координаты точек;

3) находить наибольшее и наименьшее значения функции на заданном промежутке;

4) оперировать функциональной символикой.

На основе выделенных умений, а также для аналитической обработки результатов исследования и получения количественных показателей были выделены три уровня сформированности представлений о функциональной зависимости у младших школьников: низкий, средний и высокий.

С целью определения уровня сформированности представлений о функциональной зависимости у младших школьников в ходе констатирующего эксперимента организовывались беседы с учащимися 3-х классов, проводились контрольные работы, по результатам выполнения которых выявлялись трудности, возникающие у учащихся при усвоении понятия функции, функциональной зависимости.

Чтобы оценить способность учащихся применять функциональные умения для решения практических задач им были предложены ситуационные задачи. В силу своей межпредметности, интегративности ситуационные задачи способствуют систематизации предметных знаний на деятельностной практико-ориентированной основе, когда ученики, осваивая универсальные способы деятельности, решают личностно-значимые проблемы с использованием предметных знаний. Следует отметить, что в процессе обучения математике учащиеся ни экспериментального, ни контрольного классов с такими задачами не встречались.

Приведем пример одной из ситуационных задач, которые предлагались учащимся:

Задача. «Эти простые – непростые зависимости»

Каждый слышал поговорку: «Как аукнется, так и откликнется». А ты замечал на себе проявление такой закономерности?

Текст 1. Маша и Миша решили посадить одновременно цветы, чтобы подарить их маме к 8 марта. В течение 12 недель Маша поливала цветок регулярно, а Миша иногда забывал. Высота цветка Маши в конце каждой недели представлена в таблице 1:


Неделя, t 1 2 3 4 5 6 7 8 9 10 11 12

Высота

цветка, h (см)

2 4 6 8 10 12 14 16 18 20 22 24

Текст 2. Существуют различные шкалы для измерения температуры. Для перевода температуры, измеренной в градусах Цельсия, в градусы Фаренгейта пользуются формулой , где С – число градусов по шкале Цельсия, а F – число градусов по шкале Фаренгейта. Для каждого значения температуры по Цельсию с помощью этой формулы можно найти соответствующее значение температуры по шкале Фаренгейта.

Задания.

1.         Пользуясь таблицей роста цветка Маши, составь таблицу роста цветка Миши, учитывая, что его цветок рос в два раза медленнее (из-за забывчивости Миши).

2.         Найди высоту цветка Миши через 3,5 недели. Опиши процесс нахождения ответа на вопрос.

3.         Составь таблицу перевода значений температуры из градусов по Цельсию в градусы по Фаренгейту (для значений от 0° С до 30° С).

4.         Выяви зависимости, описанные в тексте 1 и тексте 2. Сравни их.

5.         Предложи жизненные ситуации, в которых проявляются закономерности, выявленные тобой из анализа текста 1 и 2.

Проанализировав результаты работ учащихся по четырем умениям, можно прийти к следующим выводам:

-   учащиеся как 3 «А», так и 3 «Б» классов понимают представленную информацию, предлагают способы решения проблемы, но при обосновании способа решения учащиеся 3 «А» класса в меньшей степени оперируют функциональными представлениями;

-   учащиеся 3 «А класса при выполнении задания, где нужно было привести примеры зависимостей, аналогичных тем, что были предложены в задаче, приводят примеры таких зависимостей, т.е. зависимостей, которые являются функциональными, в то время как учащиеся 3 «Б» класса предлагают зависимости, исходя из своего представления о них.

Таким образом, большее количество учащихся 3 «А» класса слабо оперирует функциональными представлениями и не способно применить сформированные функциональные умения для решения новых практических задач.

Данные констатирующего этапа эксперимента приведены в таблице 2.

Таблица 2

Показатели уровня сформированности представлений о функциональной зависимости у младших школьников по критериям на констатирующем этапе эксперимента

Класс Функциональные умения младших школьников
строить график функции записывать координаты точек находить наибольшее и наименьшее значения функции на заданном промежутке оперировать функциональной символикой
Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень Низкий уровень Средний уровень Высокий уровень
3 «А» класс 5 14 1 4 15 1 4 14 2 3 16 1
3 «Б» класс 1 16 3 - 13 7 1 14 5 2 15 3

В результате проведенной работы на констатирующем этапе эксперимента было установлено, что 30% всех испытуемых имеют низкий уровень сформированности представлений о функциональной зависимости, исходя из четырех критериев, определенных в начале эксперимента, 57 % испытуемых показали средний уровень и лишь 13% младших школьников имеют высокий уровень сформированности представлений о функциональной зависимости.

Анализ полученных результатов позволил сделать вывод о том, что большая часть младших школьников имеет средний и низкий уровень сформированности представлений о функциональной зависимости и нуждается в коррекции. Следовательно, результаты констатирующего этапа исследования требуют проведения формирующего этапа эксперимента в соответствии с предложенной гипотезой.


Информация о работе «Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников»
Раздел: Педагогика
Количество знаков с пробелами: 73523
Количество таблиц: 7
Количество изображений: 5

Похожие работы

Скачать
142055
9
0

... тематически. Таким образом, разработанное методическое пособие направит работу учителя на формирование позитивного взаимоотношения. 2.3 Выводы по главе II Раскрыв приемы психолого-педагогического взаимодействия учителя и ученика в конфликтных ситуациях мы выделили три основных подхода, применяемых в работе с учениками при нарушении дисциплины: «руки прочь», подход «твердой руки», « ...

Скачать
47753
0
3

... сложившимися к настоящему времени режимами работы с компьютером, игровым, экспериментным, обучающим, программно-творческим. Глава II. Методика развития алгоритмического мышления младших школьников на уроках информатики 2.1 Алгоритмическое мышление и методы его развития Коль скоро в целях обучения информатике заявлено развитие системного, аналитического и алгоритмического мышления, то ...

Скачать
160951
1
0

... и умения, но и определенный социальный статус. Меняются интересы, ценности ребенка, весь уклад его жизни. 3. Комплекс педагогических условий формирования умений учебной деятельности младших школьников Успех педагогической деятельности в значительной мере зависит от характера сложившихся взаимоотношений между учителем и обучаемыми. Анализ и обобщение психолого-педагогических исследований по ...

Скачать
114799
0
5

... школе всех видов грамматических навыков может существенно различаться в зависимости от используемых технологий и приемов обучения. Комплекс упражнений, направленных на формирование иноязычных грамматических навыков у учащихся вторых классов на основе грамматических сказок При составлении комплекса упражнений нами были выделены следующие темы, представляющие для учащийся значительные трудности: ...

0 комментариев


Наверх