Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра МПМ

Методика изучения функций в школьном курсе математики

Реферат

Исполнитель:

Студентка группы М-33 Грабовец А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.

Гомель 2007


Содержание

Введение

1. Различные подходы к трактовке понятия функции в курсе математики в средней школе

2. Основные направления введения понятия функции в школьном курсе математики

3. Методика формирования понятий общих свойств функций

4. Методическая схема изучения функций. Изучение функций в классе функций

Заключение

Литература


Введение

Функциональная линия школьного курса математики – одна из ведущих, определяющая стиль изучения тем в курсах алгебры и начала анализа. Её особенность состоит в представлении возможности установления разнообразных связей в обучении.

В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе функциональной линии в системе обучения строится так, чтобы внимание учащихся сосредотачивалось на:

1)         выделенных и достаточно четко разграниченных представлениях, связанных с функцией;

2)         установлении их взаимодействия при развёртывании учебного материала.


1. Различные подходы к трактовке понятия функции в курсе математики в средней школе

Задача. При каких значениях параметра а уравнение  имеет ровно четыре корня?

Строим графики функций  и в одной системе координат, воспринимая равенство как равенство значений выбранных функций.

Построим график  четыре точки пересечения получаем для . При  (координаты точки максимума (1,2)) получаем верхнее ограничение. Второй промежуток значений для : от точки минимума функции, т.е. . Основа решения – использование функциональных и графических представлений, а само решение – переход от исследования данного в уравнении к исследованию функции. При построении графика этой функции  с помощью элементарных преобразований графиков наиболее трудным является оценивание значения выражения . В качестве подсказки можно воспользоваться неравенством:

Показанный метод называется функционально-графическим моделированием. Освоение его и с формальной, и с прикладной стороны в значительной мере подчинено изучение всей функциональной линии курсов алгебры и начала анализа.

Различают две основные математические трактовки понятия функции:

1) генетическую;

2) логическую.

Основные понятия, используемые при генетической трактовке: переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости. Достоинство такого подхода состоит в том, подчеркивая динамический характер понятия функциональной зависимости, выявляется модельный аспект понятия функции относительно изучения явлений природы. Например, общая схема применения функции для описания результатов опыта имеет вид:

1)провести эксперимент;

2)составить по результатам эксперимента таблицу значений связанных друг с другом величин;

3)построить по табличным данным график;

4)подобрать эмпирическим путём формулу для данной функции;

5)дать развёрнутую характеристику свойств функции;

6)истолковать установленные свойства функции на языке эксперимента.

Однако ограничительная черта в этом подходе в том, что переменная всегда неявно предполагается пробегающей непрерывный ряд числовых значений. Поэтому понятие связывается с числовыми функциями числовог8о аргумента.

Логическая трактовка: обучение функциональным представлениям следует строить на основе методического анализа понятия функции в поисках понятия алгебраической системы. Здесь функция – отношение специального вида между двумя множествами, удовлетворяющее условие функциональности. Начальный этап изучения – понятие отношения. Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств: формулы, таблицы, задание функции стрелками, перечислением пар, использованием не только числового, но и геометрического материала(теперь и геометрическое преобразование можно рассматривать как функцию). Однако наработанные таким образом общие понятия в дальнейшем связываются только с числовыми функциями одного числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия.

2. Основные направления введения понятия функции в школьном курсе математики

В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе функциональной линии в системе обучения строится так, чтобы внимание учащихся сосредотачивалось на:

1)         выделенных и достаточно четко разграниченных представлениях, связанных с функцией;

2)         установлении их взаимодействия при развёртывании учебного материала.

Выделена система компонентов и установлена связь между ними. В систему входят такие компоненты: 1) представление о функциональной зависимости переменных величин в реальных процессах и математике; 2) представление о функции как о соответствии;3) построение и использование графиков функций, использование графиков функций; 4) вычисление значений функций, определённых различными способами;

Введение понятия ведётся по трём основным направлениям: 1) упорядочение основных представлений о функции; развёртывание системы понятий, характерных для функциональных линий (способы задания и общие свойства функций, графическое истолкование области определения, области значения, возрастания и т. д. на основе метода координат); 2) глубокое изучение отдельных функций и их классов; 3) расширения области приложения алгебры за счёт включения в нею идеи функции и разветвлённой системы действий с функцией.

Первое направление появляется в алгебре ранее остальных. Основной акцент – усвоение учащимися однозначности соответствия аргумента и определяемого по нему значения функции. Из разнообразных способов задания функции чаще всего используется способ задания функции формулой остальные способы задания – подчинённые. Сопоставление различных способов задания вызвано практической потребностью и важно для усвоения всего многообразия понятия функции.

Использование перевода задания функции из одной формы представления в другую – необходимый методический приём приведении понятия функции. Реализация – система заданий, в которых представлены все случаи такого перевода. Например, при отработке формы представления можно рассмотреть задачи:

1. изобразить график функции у=4х+1 на  ;


Информация о работе «Методика изучения функций в школьном курсе математики»
Раздел: Педагогика
Количество знаков с пробелами: 20346
Количество таблиц: 1
Количество изображений: 2

Похожие работы

Скачать
94255
14
23

... подобраны опорные задачи, которые можно использовать на уроке при изучении данной темы. Таким образом, в данной работе были рассмотрены основные, общие моменты изучения многогранников в школьном курсе стереометрии. В следствие чего дальнейшие исследования могут проходить в направлении более детального изучения отдельных разделов данной темы, а также пропедевтического введения многогранников в ...

Скачать
93189
0
0

... Для это разделим 558 на 1800. Получим 0,31. Значит, картофелем засажена 31 сотая всего поля. Каждая сотая равна 1% поля, поэтому картофелем засажен 31% всего поля. 2.2 Методика введения процентов в учебнике " математика 5 " (под редакцией Л. Н. Шеврин, А. Г. Гейн, И.О. Коряков, другие.) Сотая часть метра - это сантиметр, сотая часть рубля – копейка, сотая часть центнера - ...

Скачать
79870
10
43

... – педагогический эксперимент. Эксперимент проходил в три этапа: 1 этап – констатирующий эксперимент. При его проведении были выявлены знания учащихся по теме «Использование и измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии», при этом использовались различные формы и методы выявления знаний, такие как: анкетирование, беседы с учащимися и учителями, ...

Скачать
88628
4
18

... имеют достаточно четкое и правильное представление из собственного жизненного опыта, а формулировки которых являются слишком громоздкими.   Выводы по § 1 1.      Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие логического мышления учащихся. ...

0 комментариев


Наверх