1.1.2. Роль и место математики в профилях различных направлений
Математика объективно является одной из самых сложных школьных дисциплин и вызывает трудности у многих школьников. В тоже время имеется большое число учащихся с явно выраженными способностями к этому предмету. Разрыв в возможностях восприятия курса учащимися, находящимися на двух «полюсах», весьма велик.
В преподавании математики накоплен определенный опыт дифференцированного обучения. Он относится в основном к обучению сильных школьников. Однако дифференциацию обучения нельзя рассматривать исключительно с позиций интересующихся математикой учащихся и по отношении лишь к старшему звену школы. Ориентация на личность ученика требует, чтобы дифференциация обучения математике учитывала потребности всех школьников – не только сильных, но и тех, кому этот предмет дается с трудом или чьи интересы лежат в других областях.
Дифференциация затрагивает все компоненты методической системы обучения и все ступени школы. Она может проявляться в двух основных видах: уровневая и профильная дифференциация. Первый выражается в том, что, обучаясь в одном классе, по одной программе и учебнику, школьники могут усваивать материал на различных уровнях. Второй вид дифференциации – это дифференциация по содержанию. Она предлагает обучение разных групп школьников по программам, отличающимся глубиной изложения материала, объемом сведений и даже номенклатурой включенных вопросов. В основной школе ведущим направлением дифференциации является уровневая, хотя она не теряет своего значения и в старших классах. На старшей ступени школы приоритет отдается разнообразным формам профильного изучения предметов. Основная школа является обязательной, старшая школа – профильной.
В последнее время привлекает внимание методистов и учителей идея становления отечественной профильной школы. Профильная школа не является профессиональной, ее задача – дать общее среднее образование с ориентацией на некоторую сферу деятельности, к которой данные группы учащихся имеют большую склонность.
Теоретические и экспериментальные исследования позволили сформулировать общие требования к формированию содержания математического образования и построению учебно-методического комплекса, реализующего профильную дифференциацию обучения математике в общеобразовательной школе:
· изучение математики является обязательным для профильной средней школы любого направления;
· в программу по математике должны включаться дополнительные разделы, полезные для применения в будущей профессии;
· содержание математики имеет некоторое общее ядро;
· все виды пособий по математике для учащихся различных направлений должны иметь качественные различия по методическим подходам, языку, системам упражнений.
В 10-11-х классах дифференциация образования приобретает систематический характер. Математика входит в число обязательных учебных предметов, однако она может иметь разный удельный вес в общеобразовательной подготовке ученика по времени, отводимого на ее изучение, а также по глубине и охвату рассматриваемого материала. В соответствии с общими целями обучения математике выделяются разделы, общие для всех профилей обучения: числа, уравнения, функции и их графики, геометрические величины и их измерения, начало теорий вероятностей и статистики.
В зависимости от той роли, которую математика может играть в образовании человека, выделяют два типа школьных курсов для завершающей ступени школы: курс общекультурной ориентации (курс А), рассчитанный на учащихся, склонных рассматривать математику только как элемент общего образования и не предполагающих использовать ее непосредственно в своей будущей профессиональной деятельности, и курсы повышенного типа, обеспечивающие дальнейшее изучение математике и ее применение в качестве элемента профессиональной подготовки.
Целесообразно выделить два основных курса повышенного типа. Первый из них (курс В) предназначен для учащихся, выбравших для себя те области деятельности, в которых математика играет роль аппарата, специфического средства для изучения закономерности окружающего мира. Второй (курс С) ориентирован на тех учащихся, для которых математика является одной из основных целей познаний.
Таким образом, для старшей ступени школы целесообразно наличие трех основных математических курсов – А, В, С, которые призваны предоставить каждому ученику возможность изучать математику на уровне, соответствующем его интересам, способностям, склонностям. Этих трех курсов достаточно для преподавания математики по профилю любого направления.
Курс А может быть выбран теми учащимися, которых интересует, например, языки, искусство, художественное творчество, спорт или предметно-практическая деятельность, то есть работа парикмахера, повара, косметолога. Они рассматривают математику как элемент общего образования и не предполагают использовать ее непосредственно в своей деятельности. Специфической особенностью курса А должна быть явно выраженная гуманитарная направленность, то есть специальная ориентация на умственное развитие человека, на знакомство с математикой как с областью человеческой деятельности, на формирование тех знаний и умений, которые необходимы для свободной ориентации в современном мире.
Однако при этом курс А не должен сводиться к «прогулкам по саду математики». Преподавание по курсу А должно опираться на традиционные для школьного курса разделы. Обязательные требования по усвоению курса А фактически должны совпадать с базовым уровнем математической подготовки выпускников средней школы.
Нельзя согласиться с той точкой зрения, согласно которой преподаванию математики в нематематических классах отводится лишь второстепенная роль. Наоборот, значение математического образования в этих класса должно быть не только не меньше, но даже и больше, чем в классах математических. Ведь учащиеся гуманитарных классов завершают в средней школе свое математическое образование. Они не смогут в будущем осознать философию математики, увидеть ее историю, как это сделает другая часть молодежи, изучая математику в вузах. В программах по математике для гуманитарных классов больше места должны занимать вопросы мировоззренческого характера, факты из истории математики, описания ее приложений в различных областях ее деятельности. Ведь математика по своей сути является гуманитарным предметом, призванным всесторонне развивать личность ученика, отшлифовывать логику его рассуждений и научить правильно ориентироваться в окружающей обстановке. Использование гуманитарного потенциала математики, ее межпредметных связей с профильными предметами позволит школьникам глубже уяснить содержание последних, а тем самым превратить ее из второстепенного в существенно важный и полезный предмет.
Курс В ориентирован на учащихся с научным стилем мышления, выбравших для себя профили естественно-научных и научно-гуманитарных направлений: химический, биологический, географический, исторический, социологический, экономический и другие. Заметим, что математизация соответствующих наук касается лишь отдельных их областей, в основном наиболее современных, тогда как другие области практически не используют математических знаний. Поэтому курс В должен быть построен с учетом того, что математика для учащихся указанной категории является хотя бы необходимым, но и не самым важным предметом. Этот курс должен обеспечивать овладение конкретными математическими знаниями, позволяющими, в частности, выработать представления о применении в математике в профилирующей науке и достаточными для изучения математики в вузе соответствующего направления.
Заметим, что можно было бы ставить вопрос о разделении курса В на два в соответствии с особенностями процесса математизации в естественно-научных и научно-гуманитарных областях знаний. Сущностью математизации естественных и гуманитарных наук является математическое моделирование. В естественных науках главную роль играют в настоящее время количественные описания реальных процессов и соответствующие количественные модели, для исследования которых необходимы традиционные разделы математики, наряду с началами математического анализа и элементами теории вероятностей и математической статистики. В гуманитарных науках значение имеют структурные модели, построение и исследование которых требует привлечение разделов математики, более современных и весьма далеких от нынешнего курса математики, и, прежде всего, дискретной математики (например, создание информационных систем в приложениях различных гуманитарных наук).
Во всяком случае, в настоящее время выделение научно-гуманитарного направления нецелесообразно и математические потребности в конкретной профилирующей науке должны удовлетворяться в основном в рамках внеклассной работы. Решать одновременно две задачи – освоение и традиционных, и специализированных разделов математики – вряд ли возможно.
Курс С – наиболее строгий и полный курс математики – ориентирован на учащихся, выбравших для себя деятельность, непосредственно связанную с математикой, и какой-то профиль из группы профилей «математического направления». В эту группу вместе с математическим профилем объединяются такие профили, как физический и компьютерный. Дело в том, что процесс математизации знаний исторически начался с математизации физики, а современное развитие и состояние физики, как и всего физического цикла наук, неразрывно связано с математическим аппаратом и математическим мышлением. Современная наука информатика, обязанная своим происхождением вычислительной математике и математической логике, целиком основана на математическом стиле мышления, в том числе и в разделах, которые содержательно с математикой не связаны. Эти особенности физики и информатики и позволяют объединить их в одну группу с математическим профилем с точки зрения обучения математике.
Основой учебно-методического обеспечения по математике этой группы профилей и должен быть курс С, ориентированный на овладение учащимися необходимых объемов конкретных математических знаний и формирование в этом процессе интеллектуальной культуры личности. Практика углубленного изучения математики и физики показывает, что гуманитарное воздействие математики проявляется автоматически, что вытекает из самой природы математической деятельности.
Особенности конкретного профиля могут потребовать включения в соответствующий курс материала, расширяющего основной курс и углубляющего его. Например, для развития абстрактного и логического мышления учащихся какого либо профиля научно-гуманитарного направления целесообразно повышенное внимание к аксиоматическому методу, для нужд технического и архитектурного профилей, может быть, следует усилить внимание к стереометрии или даже предусмотреть знакомство с элементами начертательной геометрии.
Если изучение математики в профиле чисто математическом является фактически самоцелью, то в профиле физическом изучение математики проводится, прежде всего, с целью создания необходимого для физики аппарата, а в профиле с уклоном в информатику математика формируется как основа решения специфических задач этой области знаний. Поэтому, например, изучение основ теории вероятностей и математической статистики, составляя специфическую область математических знаний, представляется обязательным в физическом профиле. Вряд ли их изучение необходимо в математическом профиле, поскольку основы соответствующей науки являются в большей степени функцией высшего образования. Аналогично основы математической логики, не являясь столь существенной частью математической науки, чтобы ее изучение в школе могло считаться обязательным, естественно рассматривать как необходимые в профиле с уклоном в информатику.
Курс общекультурной ориентации (курс А) рассчитан на 4-6 уроков в неделю, преподается в рамках единого курса математики и не ставит задачу подготовки учащихся к поступлению в вузы с повышенными требованиями к математической подготовке. Курс повышенного типа рассчитан на 5-6 уроков математики в неделю для социально-экономического, естественного, технического направлений профилей и семь уроков для физико-математического. Основными задачами этого курса являются подготовка к поступлению и продолжению образования вуза, где математика является одним из базовых предметов.
1.2. Структура и содержание элективного курса «Основы комбинаторики, теории вероятностей и математической статистики»Изучение вероятностно-статистического материала продиктовано самой жизнью. Современной России нужны люди, способные принимать нестандартные решения, умеющие творчески мыслить, хорошо ориентироваться в обычных житейских ситуациях и производственной деятельности. Вероятностный характер многих явлений действительности во многом определяет поведение человека, и курс должен формировать соответствующие практические ориентиры, вооружать учащихся, как общей вероятностной интуицией, так и конкретными способами оценки данных. Дети должны научиться извлекать, анализировать и обрабатывать разнообразную, порой противоречивую информацию, принимать обоснованные решения в ситуациях со случайными исходами, оценивать степень риска и шансы на успех. Необходимость формирования вероятностного мышления обусловлена и тем, что вероятностные закономерности универсальны: современная физика, химия, биология, демография, социология, лингвистика, весь комплекс социально-экономических наук развивается на базе вероятностно-статистической математики.
Вероятностно-статистический материал обладает огромным воспитывающим потенциалом, его изучение влияет на развитие интеллектуальных способностей, усиливает прикладной аспект курса математики, способствует развитию интереса к предмету.
Введение элементов статистики и теории вероятностей в содержание математического образования является одним из важнейших аспектов модернизации содержания образования, так как роль этих знаний в современном мире повышается.
Основными целями изучения курса являются следующие.
- Способствовать формированию и развитию умений решения комбинаторных задач, позволяющих ученикам разумно организовать перебор ограниченного числа данных, подсчитать всевозможные комбинации элементов, составленных по определённому правилу.
- Способствовать формированию и развитию вероятностного мышления, вероятностной интуиции.
- Способствовать развитию творческих способностей и дарований.
- Создать условия для развития умений самостоятельно приобретать и применять знания.
- Создать условия для расцвета личности школьника с учётом его возрастных особенностей.
1.2.2. Структура и содержание элективного курсаВ соответствии с целями изучения данного элективного курса был проведен отбор содержания.
Раздел 1. Элементы комбинаторики.
Исторические и занимательные комбинаторные задачи (фигурные числа, магические и латинские квадраты). Основные комбинаторные методы: перебор всех возможных вариантов (систематический перебор, перебор с ограничениями), полный граф, дерево вариантов (граф-дерево), таблица вариантов, правила произведения и суммы. Факториал. Перестановки. Размещения. Сочетания. Формулы для подсчёта числа перестановок, размещений и сочетаний. Треугольник Паскаля. Бином Ньютона. Комбинированные задачи.
Ученические проекты:
· «Из истории комбинаторики».
· «Задание для друга» (по бесформульным методам).
· «Бином Ньютона».
· «Комбинаторика вокруг нас».
Раздел 2. Элементы теории вероятностей.
Испытания и события. Невозможные, достоверные и случайные события. Виды случайных событий (совместные и несовместные, равновозможные и неравновозможные, противоположные, независимые), действия над случайными событиями (сумма, произведение). Полная группа. Эксперименты и их исходы. Классическое определение вероятности. Решение вероятностных задач с помощью формул комбинаторики. Относительная частота. Статистическая вероятность. Геометрические вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Вероятность гипотез, формула Бейеса. Формула Бернулли. Закон больших чисел.
Ученические проекты:
· Доклады об ученых, стоящих у истоков теории вероятности.
· «Парадоксы».
· «Кому нужна теория вероятностей?».
Раздел 3. Случайные величины.
Случайная величина. Дискретная и непрерывная случайные величины. Закон распределения вероятностей ДСВ. Математическое ожидание ДСВ. Дисперсия ДСВ. Среднее квадратическое отклонение. Метод наименьших квадратов.
Ученические проекты:
· «Современные азартные игры».
· «Моделирование методом Монте-Карло».
Раздел 4. Элементы математической статистики.
Предмет статистики. Основная задача и основной метод статистики. Статистическая информация и способы её представления: простой статистический ряд (выборка), таблицы частот, таблицы относительных частот, столбчатые диаграммы, полигоны частот, круговые диаграммы, гистограммы. Простейшие статистические исследования. Этапы статистических исследований. Опрос общественного мнения как пример сбора, обработки, представления и интерпретации данных. Статистические характеристики: среднее значение, мода, медиана, размах, выборочная дисперсия, выборочное среднее квадратичное отклонение. Определение линий регрессии методом наименьших квадратов для двумерных выборок.
Ученические проекты:
· «Развитие математической статистики».
· Статистическое исследование на заданную тему.
В процессе обучения учащиеся приобретают умения:
· подсчитать количество всевозможных комбинаций элементов, образованных определённому правилу;
· решать задачи с помощью графов;
· определять типы случайных событий;
· вычислять вероятность события, пользуясь простейшими свойствами вероятности;
· проводить эксперименты со случайными исходами;
· извлекать информацию из таблиц и диаграмм, анализировать её;
· записывать исходные данные в таблицу, используя их составлять диаграммы;
· регистрировать результаты наблюдений и делать выводы;
· выполнять математические, процентные расчёты.
Учитывая значимость и назначение курса в каждом из профилей определим структуру курса и составим учебный план.
№ | РАЗДЕЛ | ТЕМА ЗАНЯТИЯ | КОЛ-ВО ЧАСОВ |
| |||
Матема-тический профиль | Гумани-тарный профиль | Экономи-ческий профиль |
| ||||
1 | Элементы комбинато-рики | 1. Комбинаторные задачи. Перебор всех возможных вариантов. 2. Подсчет вариантов с помощью графов, таблица вариантов. 3. Кортежи. Правила произведения и суммы. 4. Перестановки. 5. Размещения. 6. Сочетания. 7. Самостоятельная работа 8. Некоторые свойства сочетаний. 9. Свойство сочетаний =+ и треугольник Паскаля. 10. Бином Ньютона. 11. Решение задач. 12. «Комбинаторика вокруг нас» (итоговое). | 1 2 2 2 2 2 1 1 1 1 2 2 | 1 1 1 1 1 1 1 1 1 2 1 | 1 1 1 1 1 1 1 1 1 1 2 2 |
| |
Всего | 19 | 12 | 14 |
| |||
2 | Элементы теории ве-роятностей | 1. Предмет теории вероятностей. События. 2. Виды случайных событий. 3. Эксперименты и их исходы. 4. Классическое определение вероятности. 5. Решение вероятностных задач с помощью формул комбинаторики. 6. Статистическая вероятность. 7. Геометрическая вероятность. 8. Теорема сложения вероятностей. 9. Теорема умножения вероятностей. 10. Следствия теорем сложения и умножения. 11. Формула Бернулли. Закон больших чисел. 12. Решение задач. 13. Самостоятельная работа. 14. «Кому нужна теория вероятностей?» (итоговое). | 2 1 1 1 1 1 1 2 2 2 1 2 1 2 | 1 1 1 1 1 1 1 1 1 1 1 2 | 2 1 1 1 1 1 1 1 2 1 1 2 1 2 |
| |
Всего | 20 | 13 | 18 | 18 | |||
3 | Случайные величины | 1. Понятие случайной величины. Закон распределения вероятностей дискретной случайной величины. 2 Математические операции над случайными величинами. 3 Числовые характеристики ДСВ. Математическое ожидание. 4 Дисперсия ДСВ. Среднее квадратическое отклонение. 5 Метод наименьших квадратов. 6. Зачет. | 2 1 2 2 1 2 | 1 1 1 1 | 1 1 2 1 1 1 |
| |
Всего | 10 | 4 | 7 |
| |||
4 | Элементы математической статистики | 1. Выборочный метод. 2. Числовые характеристики статистических рядов. 3. Статистические исследования. Этапы статистического исследования. 4. Определение линий регрессии методом наименьших квадратов для двумерных выборок. 5. Исследовательские проекты и их защита. | 3 2 1 2 2 | 2 1 1 1 | 3 2 1 2 2 |
| |
Всего | 10 | 5 | 10 |
| |||
Итого | 60 | 34 |
|
Занятие №1. Комбинаторные задачи. Перебор всех возможных вариантов.
В начале занятия учащимся необходимо дать понятие о таком разделе математики, как комбинаторика, и привести примеры нескольких комбинаторных задач для привития интереса к данному разделу.
В науке и практике часто встречаются задачи, решая которые приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций. Такие задачи получили название комбинаторных задач, а раздел математики, в котором рассматриваются подобные задачи, называют комбинаторикой. Слово «комбинаторика» происходит от латинского слова combinare, которое означает «соединять, сочетать». Методы комбинаторики находят широкое применение в физике, химии, биологии, экономике, теории вероятностей и других областях знаний.
Приведем примеры некоторых комбинаторных задач.
1) Сколькими способами можно расположить в электрической цепи 7 различных приборов?
2) Сколько словарей надо издать, чтобы можно было непосредственно выполнять переводы с любого из 5 языков: русского, английского, французского, немецкого, итальянского, на любой другой из этих 5 языков?
3) Вова точно помнит, что в формуле азотной кислоты подряд идут буквы H, N, O и что есть один нижний индекс – то ли двойка, то ли тройка. Сколько имеется вариантов, в которых индекс стоит не на втором месте?
4) Сколько разных типов гамет может дать гибрид, гетерозиготный по 3 независимым признакам?
5) Перечислить все трехзначные числа, в записи которых встречаются только цифры 1 и 2.
6) Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч. Сколько различных вариантов посещения футбольного матча для троих друзей?
Таким образом, различают следующие типы комбинаторных задач:
· Задачи, в которых требуется перечислить все решения (пример 5).
· Задачи, состоящие в требовании выделить из всех возможных решений такое, которое удовлетворяет заданному дополнительному требованию (пример 3).
· Задачи, в которых требуется подсчитать число решений (пример 1, 2, 6, 4).
Процесс навыков подсчета комбинаторных объектов можно расчленить на три этапа в зависимости от времени обучения и методов подсчета:
- подсчет методом непосредственного перебора;
- подсчет с использованием комбинаторных принципов;
- подсчет с использованием формул комбинаторики.
Каждый из этих этапов готовит почву для формирования навыков следующих этапов. Поэтому на начальном этапе с учащимися нужно обязательно рассмотреть бесформульные методы.
Рассмотрим основные методы, используемые в решении комбинаторных задач.
Перебор всех возможных вариантов
Операция перебора раскрывает идею комбинирования, служит основой для формирования комбинаторных понятий, поэтому на первом месте должна стоять задача по формированию навыков систематического перебора.
Пример 1. Из группы теннисистов, в которую входят четыре человека – Антонов, Григорьев, Сергеев и Федоров, тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары?
Составим сначала все пары, в которые входит Антонов (для краткости будем писать первые буквы фамилий). Получим три пары: АГ, АС, АФ.
Выпишем теперь пары, в которые входит Григорьев, но не входит Антонов. Таких пар две: ГС, ГФ.
Далее составим пары, в которые входит Сергеев, но не входит Антонов и Григорьев. Такая пара только одна: СФ.
Других вариантов составления пар нет, так как все пары, в которые входит Федоров, уже составлены.
Итак, мы получили 6 пар: АГ, АС, АФ, ГС, ГФ, СФ. Значит, всего существует 6 вариантов выбора тренером пары теннисистов из данной группы.
Способ рассуждений, которым мы воспользовались при решении задачи, называют перебором возможных вариантов.
Тут же необходимо пояснить учащимся, что в данном примере нам не важен порядок выбора пары: Антонов и Григорьев или Григорьев и Антонов, и привести пример задачи, где учитывается порядок элементов в комбинации.
Пример 2. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько у друзей есть вариантов занять эти два места на стадионе?
Если на матч пойдут Антон и Борис, то они могут занять места двумя способами: 1-е место – Антон, 2-е – Борис, или наоборот. Аналогично Антон и Виктор, Борис и Виктор. Таким образом, мы получили 6 вариантов: АБ, БА, АВ, ВА, БВ, ВБ.
Следующая система задач направлена на формирование умений учащихся систематическому перебору, составлению комбинаций с учетом и без учета порядка.
Задачи:
1. Перечислить знакомые виды четырехугольников.
2. В кафе предлагают два первых блюда: борщ и рассольник – и четыре вторых блюда: гуляш, котлеты, сосиски, пельмени. Укажите все обеды из двух блюд, которые может заказать посетитель.
3. Сколько двузначных чисел можно составить, используя цифры 1, 2, 3, при условии, что цифра в числе не может повторяться? (перебор с ограничением).
4. (Устно) Важен или нет порядок в следующих выборках (комбинациях):
а) капитан волейбольной команды и его заместитель;
б) три ноты в аккорде;
в) «шесть человек останутся убирать класс!»;
г) две серии для просмотра из нового многосерийного фильма.
5. Придумайте сами четыре различные ситуации, в двух из которых порядок выбора важен, а в двух – нет.
6. Стадион имеет 4 входа: A, B, C, D. Укажите все возможные способы, какими посетитель может войти через один вход, а выйти через другой. Сколько таких способов?
7. В магазине продают кепки трех цветов: белые, красные и синие. Кира и Лена покупают себе по одной кепке. Сколько существует различных вариантов покупок для этих девочек? Перечислите их.
В качестве домашнего задания можно предложить учащимся написать работу (сообщение, реферат, доклад) на тему «Из истории комбинаторики».
Занятие №2. Подсчет вариантов с помощью графов. Таблица вариантов.
Эффективным приемом, организующим подсчет, является составление учащимися таблиц, построение графов. Графы, таблицы позволяют в наглядной форме представить идею комбинирования и процесс подсчета комбинаторных объектов. Поэтому использование этих методов в обучении комбинаторике в школе оправдывается не только познавательными, но и педагогическими соображениями.
Для подведения учащихся к следующим комбинаторным методам целесообразно рассмотреть задачу, в которой количество всевозможных комбинаций из данных элементов велико и процесс их подсчета затруднителен.
Пример 1. Сколько различных трехзначных чисел можно записать с помощью цифр 1, 2, 3 при условии, что цифры в числе могут повторяться?
Перебор вариантов можно организовать следующим образом. Выписать все числа, начинающиеся с цифры 1 в порядке их возрастания; затем – начинающиеся с цифры 2; после чего – начинающиеся с цифры 3. Таких комбинаций получим 27. При переборе легко было упустить какую-нибудь из них.
Нередко подсчет вариантов облегчают графы. Так называют геометрические фигуры, состоящие из точек (их называют вершинами) и соединяющих их отрезков (называемых ребрами графа). При этом с помощью вершин изображают элементы некоторого множества (предметов, людей, числовых и буквенных кодов и т.д.), а с помощью ребер – определенные связи между этими элементами.
Рассмотрим два вида графов:
... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1. Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...
... -иллюстративного и репродуктивного метолов, а экономический профиль ориентирован на формирование прикладного стиля мышления. 2. Методика проведения элективных курсов по математике в профильной школе 2.1 Цели организации элективных курсов по математике Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения ...
0 комментариев