1939 г. Компания Siemens, в которой работал Руска, выпустила первый коммерческий электронный микроскоп с разрешающей способностью 10 нм.

Днем рождения нанотехнологий считается 29 декабря 1959 г. Профессор Калифорнийского технологического института Ричард Фейман выступил с лекцией на ежегодной встрече Американского физического общества в Калифорнийском технологическом институте. В этом докладе, названном "На дне много места", он выразил идею "управления и контроля материалов на микроскопическом уровне", подчеркивая, что речь идет не только о миниатюризации, но и о таких возможностях, как размещение всей Британской Энциклопедии на кончике булавки. По мнению Ричарда, достигнуть этого можно уменьшая обычные размеры в 25 000 раз без потери разрешения. Он предполагал, что используя подобные технологии, можно уместить все мировое собрание книг в одну брошюру. "Такое возможно, — сказал Фейман, — в силу сохранения объектами свойства размерности, несмотря на то, что речь идет об атомном уровне".

Хотя Фейман никогда не упоминал понятие "нанотехнологии", он обратил внимание на возможность создания микроскопических приборов и невероятно маленьких компьютеров, которые как хирурги могли бы проникать в наши тела и выполнять определенные задачи. Многие ученые восприняли идеи Ричарда как шутку, учитывая его знаменитое чувство юмора. Однако, он предложил награду в 1000$ тому, кто первым уменьшит страницу к 1/25 000 ее первоначального размера так, чтобы ее можно было прочитать с помощью электронного микроскопа. В 1985 году выпускник Стэнфорда Том Ньюмэн, используя электронный луч, записал первую страницу "Истории двух городов" Чарльза Диккенса на кончике булавки. Отправив результаты своего труда Фейману, он в течение двух недель получил от него чек.

Многие ученые до сих пор удивляются, на сколько точны были предположения Ричарда Феймана. В своей оригинальной речи он подчеркивал те огромные возможности, появляющиеся при работе на молекулярном уровне. Фейман хотел подтолкнуть людей в нужном направлении, чтобы в будущем, "Оглядываясь на наше время, — говорил он, — Все удивлялись, почему только в 1960 году кто-либо начал серьезно задумываться над этим вопросом".

3.Этап закрепления изученного материала. Преподаватель: теперь давайте коротко повторим то, что мы сегодня изучили.

Преподаватель задает вопросы по теме занятия, а учащиеся отвечают. Список основных вопросов – Что такое нанотехнологии, определение наноматериалы, в каком году был выпущен коммерческий электронный микроскоп.

4.Заключительный этап.

Подводятся итоги занятия, оговариваются основные понятия, изученные на занятии, и примерный перечень вопросов, которые будут рассмотрены на лабораторной работе.

План- конспект занятия № 2.

Тема: Наноматериалы и технологии их получения.

Цель: Предоставить учащимся информацию информацию о технологиях получения наноматериалов.

Задачи:

- Обучающая: Сформировать представление о наноматериалах, их разнообразии, технологиях получения и уникальных свойствах. Познакомить учащихся с разнообразием наноматериалов и их свойствами.

- Развивающая: развивать у учащихся память, логическое мышление, трудовые навыки, интерес к предмету.

- Воспитывающая: способствовать воспитанию: целеустремленности, инициативы, самостоятельности, умение логически мыслить, самостоятельно высказывать и отстаивать свою точку зрения, сознательной дисциплины, усердие.

Тип занятия: Комбинированный.

Оснащение:

- МТО: компьютер, проектор просмотр презентации 1.

- МО: Конспект занятия, учебное пособие "Очарование нанотехнологии" Хартманн У.Г.

Структура занятия:

1. Организационный этап(2-3 минуты)

2.         Этап объяснения нового материала (55 минут)

3.         Проведение теста (10 минут)

4.         Этап закрепления изученного материала (15 минут)

5.         Заключительный этап (5 минут).

Ход занятия:

1. Организационный момент.

Преподаватель приветствует студентов. Происходит отметка присутствующих на занятии и постановка темы занятия.

2.Этап объяснения нового материала

Обсуждение вопроса о классификации наноматериалов нужно начать с экскурса в развитие человеческой цивилизации, тесно связанное с освоением новых материалов и технологий их получения. Определения понятий "структура" и "наноматериалы" имеет смысл продиктовать учащимся для записи. Важно обратить внимание учащихся на взаимосвязь между размерами вещества и его свойствами, особенно при достижении размеров частиц менее 100 нм. Изменения свойств связаны с двумя основными причинами: увеличением доли поверхности и изменением электронной структуры в силу квантовых эффектов. (приложение 2).

Излагая материал о разнообразии наноматериалов, важно отметить, что современная наука выделяет следующие виды наноматериалов: наночастицы, фуллерены, нанотрубки и нановолокна, нанопористые структуры, нанодисперсии, наноструктурированные поверхности и пленки, нанокристаллические материалы.

Наночастицами называют частицы, размер которых меньше 100 нм. Наночастицы состоят из 108 или меньшего количества атомов, и их свойства отличаются от свойств объемного вещества, состоящего из таких же атомов. Наночастицы, размер которых меньше 5-10 нм, называют нанокластерами. Слово "кластер" произошло от англ. cluster – скопление, гроздь. Обычно в нанокластере содержится до 1000 атомов.

Фуллерены – кластеры из более чем 40 атомов углерода, по форме представляющие собой шароподобные каркасные структуры, напоминающие футбольный мяч. Фуллерены получили свое название в честь архитектора Фуллера, который придумал подобные структуры для использования их в архитектуре.

В 1991 году были обнаружены длинные углеродные структуры, получившие название нанотрубок. Нанопористые вещества представляют собой пористые вещества с нанометровым размером пор. Размеры нанопор находятся в пределах 1-100 нм. При уменьшении размеров пор у наноматериалов появляются новые способности к фильтрации и сорбции различных химических элементов.

Нанодисперсии – системы, состоящие из жидкой фазы с равномерно растворенными в ней наночастицами. Сегодня нанодисперсии в основном применяются в медицине и косметике.

Пленки, или слои, собранные из полупроводниковых материалов, называют гетероструктурами. Самая тонкая пленка состоит из одного атомного слоя вещества, нанесенного на твердую или жидкую поверхность. Такие пленки называют пленками Ленгмюра – Блоджетта. Гетероструктура может состоять из последовательности десятков полупроводниковых слоев толщиной в несколько нанометров. Полупроводниковые гетероструктуры используются для создания ярких светодиодов, лазеров и других полупроводниковых приборов современной микроэлектроники.

Важно обратить внимание учащихся на то, что российский ученый Ж.И. Алферов в 2000 году получил Нобелевскую премию по физике за разработку технологий создания гетероструктур. Гетероструктуры создают методом молекулярно-лучевой, газофазной, жидкостной эпитаксии, а также методом самосборки.

Разъяснитяется, что на современном этапе сформировалось 2 подхода к получению наноматериалов: "сверху-вниз" и "снизу-вверх". Технология "сверху-вниз" основана на уменьшении размеров тел механической или иной обработкой, вплоть до получения объектов нанометрового размера. Технология "снизу-вверх" сводится к получению наноразмерного объекта путем сборки из отдельных атомов и молекул.

Последующее за лекцией семинарское задание может быть представлено выступлениями групп учащихся по предложенным вопросам. Все вопросы необходимо осветить с разных сторон, с использованием разных источников. После заслушивания докладов нужно провести обсуждение и анализ, высказать критические замечания и пожелания. По окончанию урока представитель каждой из групп предлагает окончательный проект. Учитель оценивает работу участников дискуссии.

3.Тесты

1.         Сопоставьте определения:

o     наночастицы; частицы, размер которых меньше 5-10 нм;

o     нанокластеры; частицы, размер которых меньше 100 нм;

o     нанопленки; кристаллические вещества, размер которых меньше 100 нм;

o     нанокристаллы. вещества, состоящие из одного и более атомных слоев.

2.         Что такое фуллерены?

o     длинные углеродные структуры;

o     кластеры из более чем 40 атомов углерода, по форме представляющие шароподобные каркасные структуры;

o     наночастицы, растворенные в жидкой фазе;

o     шарообразные молекулы, содержащие атомы, размером меньше 100 нм.

3.         Что такое нанодисперсии?

o     системы, состоящие из жидкой фазы с равномерно растворенными в ней наночастицами;

o     системы, состоящие из нанокластеров;

o     системы, состоящие из нанопористых веществ;

o     системы, состоящие из нанопористого вещества.

4.         Какие технологии относятся к технологии "сверху-вниз"?

o     литография;

o     эпитаксия;

o     литография и конденсация;

o     механическая обработка (измельчение).

5.         Поставьте в правильной последовательности этапы литографии:

o     экспонирование;

o     химическое травление;

o     нанесение фоторезистора.

6.         В чем заключается технология "снизу-вверх"?

o     основана на уменьшении размеров тел механической или иной обработки, вплоть до получения объектов нанометрового размера;

o     сводится к получению наноразмерного объекта путем сборки наноматериалов из отельных атомов и молекул.

7.         Что такое эпитаксия?

o     наращивание оксидной пленки на кристалле;

o     ориентированный рост одного кристалла на поверхности другого;

o     получение наночастиц путем испарения из макроскопического тела атома;

o     создание наноструктур на поверхности твердого тела.

8.         Что такое синергетика?

o     наука о самоорганизующихся системах;

o     наука о нанокристаллических материалах;

o     наука о хаосе;

o     наука об экономии энергии.

4.Этап закрепления изученного материала. Преподаватель: теперь давайте коротко повторим то, что мы сегодня изучили.

Преподаватель задает вопросы по теме занятия, а учащиеся отвечают. Список основных вопросов – Дайте определение понятию "наноматериалы"? Какие виды наноматериалов вы знаете? Что называют наночастицами и нанокластерами? Чем обусловлены особые свойства наноматериалов? Приведите примеры технологии "сверху-вниз".

5.Заключительный этап.

Подводятся итоги занятия, оговариваются основные понятия, изученные на занятии, и примерный перечень вопросов, которые будут рассмотрены на лабораторной работе.

План- конспект занятия № 3

Тема: Нанотехнологии вокруг нас.

Цель: Познакомить учащихся с современным состоянием дел и ближайшими перспективами применения нанотехнологических методов в быту, в медицине, промышленности и военном деле.

Задачи:

- Обучающая: Рассказать учащимся о применении нанотехнологий в повседневной жизни.

- Развивающая: развивать у учащихся память, логическое мышление, трудовые навыки, интерес к предмету.

- Воспитывающая: способствовать воспитанию целеустремленности, инициативы, самостоятельности; умению логически мыслить, самостоятельно высказывать и отстаивать свою точку зрения; сознательной дисциплины.

Тип занятия: Комбинированный.

Оснащение:

- МТО: компьютер, проектор, видеофильм "нанотехнологии"

- МО: План-конспект лекции, учебное пособие "Голубая мечта Доналда Рамсфелда" Аксёнов П.Н.

Структура занятия:

1.Организационный этап(2-3 минуты)

2.Этап объяснения нового материала (55-60 минут)

3.Проведение теста (10 минут)

4.Этап закрепления изученного материала (10 минут)

5.Заключительный этап (5 минут).

Ход занятия:

1.Организационный момент.

Преподаватель приветствует студентов, отмечает присутствующих и сообщает тему занятия.

2.Этап объяснения нового материала.

Рассмотрение вопроса перспектив использования нанотехнологий в повседневной жизни следует начать с определения получивших наибольшее распространение нанотехнологических методов: нанопокрытий и золь-гель методов. Необходимо сконцентрировать внимание учащихся на принципиальных отличиях различных физических свойств покрытий из наночастиц от свойств непрерывных покрытий. Следует подчеркнуть, что различные виды наночастиц в составе нанопокрытий позволяют управлять механическими, оптическими и иными свойствами материалов, на которые они нанесены.

Далее следует дать учащимся представление об использовании особых свойств наноструктурированных материалов. Как пример можно привести использование золотых наночастиц в качестве катализаторов и поглотителей запахов. Далее, от основных объектов нанотехнологий следует перейти к примерам использования нанотехнологий в повседневной жизни:

1.         в медицине: антисептики, транспортировочные наноконтейнеры, и др.;

2.         в парфюмерной и пищевой промышленности;

3.         при производстве спортивных товаров;

4.         при производстве одежды и обуви.

При рассмотрении конкретных областей применения наночастиц и нанопокрытий следует обращать внимание учащихся на то, какие именно их свойства используются в данном случае. Так, в медицине используются в основном малые размеры наночастиц, позволяющие им проникать вместе с кровотоком через клеточные мембраны. При использовании наноматериалов в качестве катализаторов и фильтров в автомобильной и парфюмерной промышленности используется большая площадь поверхности наноструктурированной среды, резко увеличивающая эффективность взаимодействия. При изготовлении сверхпрочных и сверхлёгких материалов, используемых в производстве спортивных товаров, актуальными становятся особые механические свойства наноматериалов. При производстве одежды и обуви используются особые структурные свойства, обеспечивающие содержание воздуха в материале до 99,8%, что обуславливает отличные теплоизолирующие свойства.

Вторую часть урока следует посвятить изучению применения нанотехнологий в военном деле. Необходимо подчеркнуть, что в военном деле, как правило, используются наиболее передовые разработки, лишь некоторое время спустя получающие распространение и в других областях человеческой деятельности. В качестве примера можно рассмотреть костюм солдата будущего. Спектр используемых свойств нанообъектов также весьма широк. Например, при производстве так называемой "мягкой брони" используются особые механические свойства нанообъектов, причём "подсмотренные" у живой природы. В конструкции костюма будут использоваться специально сконструированные наномашины-усилители, которые смогут увеличить силу солдата на 300%. Будут использованы также полупроводниковые и медицинские нанотехнологические методы.

Следует особо отметить перспективное применение комплексов простых микро- и наноустройств ("умная пыль"), которые, взаимодействуя между собой, могут обладать возможностями, намного превосходящими возможности отдельных объектов. Также следует подчеркнуть, что одним из наиболее перспективных направлений считается создание новых материалов со сложной структурой для военной техники. Кроме уже рассмотренного примера нанокомпозитной брони, следует отметить создание специальной "электромеханической краски", которая позволит менять цвет подобно хамелеону, а также предотвратит коррозию и сможет "затягивать" мелкие повреждения на корпусе машины. "Краска" будет состоять из большого количества наномеханизмов, которые позволят выполнять все вышеперечисленные функции.

·           Нанопокрытие – покрытие, состоящее из наночастиц и обладающее вследствие этого особыми свойствами.

·           Наноконтейнер – капсула, содержащая действующее вещество. Может доставляться прямо к источнику заболевания, не подвергая воздействию весь организм и сводя к минимуму побочные эффекты.

·           "Мягкая броня" – условное название тканых и нетканых материалов, обладающих гибкостью, но в то же время стойкостью к механическому воздействию.

·           "Умная пыль" – комплекс микроустройств, способных к коллективным действиям.

·           Электромеханическая краска – покрытие, состоящее из большого количества наномеханизмов, позволяющее изменять цвет. (Приложение 3)

3.Тесты

1.         Разработано покрытие для стекла, состоящее из полимерных слоев и наночастиц кварца. Что происходит при попадании воды?

o     вместо крошечных капель, рассеивающих свет, вода покрывает стекло большими каплями

o     вместо крошечных капель, рассеивающих свет, вода покрывает стекло ровным прозрачным слоем

o     вместо крошечных капель, рассеивающих свет, вода полностью стекает со стекла

o     вместо крошечных капель, рассеивающих свет, вода покрывает стекло средними каплями

2.         Могут ли нанотехнологии применяться в качестве катализаторов и фильтров?

o     могут только в качестве катализаторов

o     могут только в качестве фильтров

o     могут в качестве катализаторов и фильтров

o     ме могут

3.         Наночастицы какого элемента хорошо подходят для обеззараживания ран?

o     золота

o     серебра

o     платины

o     железа

4.         Швейцарская компания изготовила для соревнований Tour de France–2005 спортивный велосипед с рамой из композиционного материала на основе углеродных нанотрубок. Его вес составлял:

o     2 кг

o     5 кг

o     4 кг

o     1 кг


Информация о работе «Методика проведения лекционных занятий по разделу "Наноматериалы и нанотехнологии" при изучении дисциплины "Материаловедение"»
Раздел: Педагогика
Количество знаков с пробелами: 64006
Количество таблиц: 3
Количество изображений: 1

0 комментариев


Наверх