Правительство Санкт-Петербурга

Комитет по образованию

ГОУ СПО Педагогический колледж № 8 Санкт-Петербурга

Методы математического развития

дошкольников

Курсовая работа выполнена

студенткой заочного отделения

Е. А. Пенцевой

Специальность 050704

“Дошкольное образование”

Курс IV, группа 42

Научный руководитель:

Преподаватель математики

Т.Ю. Тимофеева

Санкт - Петербург

2008 год


Содержание

Введение. 3

1. Сущность и основные классификации методов воспитания. 5

2. Характеристика методов математического развития. 9

2.1 Практические методы.. 9

2.2 Игра - как метод математического развития. 12

2.3 Наглядные и словесные методы.. 14

Заключение. 23

Список литературы.. 24

Приложение 1. 26

Приложение 2. 27

Приложение 3. 28


Введение

Целью данной курсовой работы является анализ методов и приемов при формировании элементарных математических представлений.

Задачи:

1. Провести отбор литературы по данной тематике.

2. Рассмотреть работу по формированию элементарных математических представлений.

3. Проанализировать все методы и приёмы в педагогическом воздействии.

Предмет исследования: использование методов и приёмов для математического развития дошкольников.

Объект исследования: методы математического развития дошкольников.

Актуальность данной тематики обусловлена тем, что математика – один из наиболее сложных предметов в школьном цикле. Поэтому в детском саду на сегодняшний день ребенок должен усваивать элементарные математические знания.

К окончанию детского сада дети должны уметь:

1. считать до десяти в возрастающем и убывающем порядке, уметь узнавать цифры подряд и вразбивку, количественные (один, два, три...) и порядковые (первый, второй, третий...) числительные от одного до десяти;

2. предыдущие и последующие числа в пределах одного десятка, уметь составлять числа первого десятка;

3. узнавать и изображать основные геометрические фигуры (треугольник, четырехугольник, круг);

4. доли, уметь разделить предмет на 2-4 равные части;

5. основы измерения: ребенок должен уметь измерять длину, ширину, высоту при помощи веревочки или палочек;

6. сравнивание предметов: больше - меньше, шире - уже, выше – ниже;

7. знать дни недели, последовательность частей суток.

При этом формированию у ребенка математических представлений способствует использование разнообразных дидактических игр, упражнений, бесед и т. д. Такие приёмы учат ребенка понимать некоторые сложные математические понятия, формируют представление о соотношении цифры и числа, количества и цифры, развивают умения ориентироваться в направлениях пространства, делать выводы.

Методами исследования выступают: теоретического анализа (историографический, сравнительный), педагогическое обобщение.


1.   Сущность и основные классификации методов воспитания

 

Разные науки используют понятие метода в связи со своей спецификой. Так, философская наука трактует метод в самом общем значении как способ достижения цели, определённым образом упорядоченная деятельность. Метод есть способ воспроизведения, средство познания изучаемого предмета. По мнению учёных, сознательное применение научно обоснованных методов является существенным условием получения новых знаний. В основе методов лежат объективные законы действительности. Метод неразрывно связан с теорией.

В педагогике метод характеризуется как целенаправленная система действий воспитателя и детей, соответствующих целям обучения, содержанию учебного материала, самой сущности предмета, уровню умственного развития ребёнка. [13, 95]

В теории и методике математического развития детей термин «метод» употребляется в двух смыслах - широком и узком. Метод может обозначать исторически сложившийся подход к предматематической подготовке в детском саду (монографический метод, вычислительный метод), а также способы и приёмы работы воспитателя с детьми. [11, 114]

В педагогических системах И.Г. Песталоцци, Ф. Фребеля, М. Монтессори и др. обосновывается необходимость математического развития детей, а в связи с этим выдвигаются идеи о совершенствовании методов их обучения.

Основоположником теории начального обучения считают И.Г. Песталоцци, резко критиковавшего существовавшие тогда догматические методы обучения. Он предлагал обучать детей счёту на основе понимания действий с числами, а не простого запоминания результатов вычислений. Суть разрабатываемой И.Г.Песталоцци методики заключалась в переходе от простых элементов счёта к более сложным. Особое значение придавалось наглядным методам, облегчающим усвоение детьми чисел.

Ф. Фребель и М. Монтессори большое внимание уделяли наглядным и практическим методам. Разработанные специально пособия («дары» Ф.Фребеля и дидактические наборы М. Монтессори) обеспечивали усвоение достаточно осознанных знаний у детей. В методике Ф. Фребеля в качестве основного метода использовалась игра, в которой ребёнок получал достаточную свободу. По мнению Ф. Фребеля и М. Монтессори, свобода ребёнка должна быть активной и опираться на самостоятельность. Роль педагога в таком случае сводилась к созданию благоприятных условий.[7, 53]

В настоящее время в педагогике имеет место несколько различных классификаций дидактических методов. Одной из первых была классификация, в которой доминировали словесные методы. Я.А.Коменский, наряду со словесными, стал распространять другой метод, основанный на приобретении информации не со слов, а «с земли, с дубов и с буков», т.е. через познание самих предметов. Главной в этой методике была опора на практическую деятельность детей. В начале ХХ в. классификация методов в основном осуществлялась по источнику получения знаний - это были словесные, наглядные, практические методы.

Однако исследователи понимали, что классификацию методов обучения нельзя проводить по одному измерению, а следует осуществлять в соответствии с целями, средствами и приёмами (М.М. Шульман).

Н. М. Верзилиным было предложено при классификации методов сочетать источниковый и логический подходы. Выделяя такие группы методов, авторы стремились подчеркнуть различные их проявления. К группе методов, основанных на слове, были отнесены беседа, рассказ, описание, дискуссия, а также работа с книгой. При этом большим недостатком было то, что слово строго отделялось от образа, т. е. наблюдался отрыв рационального познания от чувственного. М.А. Данилов предложил классификацию методов обучения по месту их применения в процессе обучения, характеру логического пути усвоения знаний, источнику их приобретения, степени активности обучающихся в усвоении знаний.

Исходя из сущности самого понятия «метод обучения», Ю.К. Бабанский предложил свою классификацию. Методы обучения рассматриваются им как способы всех основных видов деятельности и как средство формирования этих видов деятельности. Автор выделил три группы методов: стимулирования и мотивации; организации и осуществления; контроля и самоконтроля эффективности учебно-познавательной деятельности. Кроме того, Ю.К. Бабанский выделяет методы, которые относятся к так называемым отдельным: игры, учебные дискуссии, методы поощрения и др.

В педагогике существует концепция, которая базируется на использовании одного метода (монометода). К такой концепции относятся теория поэтапного формирования умственной деятельности (П.Я. Гальперин, Н.Ф. Талызина). Процесс формирования деятельности рассматривается авторами как процесс передачи социального опыта. Это происходит не исключительно путём взаимодействия учителя с учащимися, а скорее через интериоризацию соответствующей деятельности, формирование её сначала во внешней материальной форме, а затем преобразование во внутреннюю психическую деятельность.

Однако форсирование какого-либо одного метода обучения не получило должного подтверждения на практике. Наиболее рациональным, как показывает опыт, является сочетание разнообразных методов.

При выборе методов учитываются:

-     цели, задачи обучения;

-     содержание формируемых знаний на данном этапе;

-     возрастные и индивидуальные особенности детей;

-     наличие необходимых дидактических средств;

-     личное отношение воспитателя к тем или иным методам;

-     конкретные условия, в которых протекает процесс обучения и др.

Теория и практика обучения накопила определённый опыт использования разных методов обучения в работе с детьми дошкольного возраста. При этом классификация методов используется с опорой на средства обучения. В период становления общественного дошкольного воспитания на развитие методики формирования элементарных математических представлений оказали влияние методы обучения математике в начальной школе. В практику работы детских садов проникли монографический метод А.В. Грубе и вычислительный метод (метод изучения действий). Работая с дошкольниками, Е.И. Тихеева внесла много нового в разработку методов обучения детей. Составленные ею игры-занятия сочетали в себе слово, действие и наглядность. По её мнению, дети до 7 лет должны учиться считать в процессе игры и повседневной жизни. Игру как метод обучения Е.И. Тихеева предлагала вводить по мере того, как то или другое числовое представление уже «извлечено детьми из самой жизни».

В 30-е гг. идею использования игр в обучении дошкольников счёту обосновывала Ф.Н. Блехер.

Существенный вклад в разработку дидактических игр и включения их в систему обучения дошкольников началам математики внесли Т.В. Васильева, Т.А. Мусейибова, А.И. Сорокина, Л.И. Сысуева, Е.И. Удальцова и др. Начиная с 50-х гг. в обучении детей всё чаще используют практические методы (А.М. Леушина). Она рассматривала практические методы в системе других (словесных и наглядных)методов. Именно с практических действий с предметными множествами начинается знакомство детей с элементарной математикой. Это было доказано в исследованиях как А.М. Леушиной, так и её учеников. [13, 95-99]


2.   Характеристика методов математического развития

В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые. Обычно они применяются комплексно, в разнообразных комбинациях друг с другом, важно чтобы они позволяли достигать наилучших результатов при обучении маленьких детей. [12, 24]

2.1 Практические методы

В формировании элементарных математических представлений ведущим принято считать практический метод. Сущность его заключается в организации практической деятельности детей, направленной на усвоение определённых способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т.д.), на базе которых возникают элементарные математические представления.

Практический метод в наибольшей мере соответствует специфики и особенностям элементарных математических представлений, формируемых у дошкольников, так и возрастным возможностям, уровню развития их мышления, в основном наглядно-действенного и наглядно-образного. В мышлении маленького ребёнка отражается, прежде всего, то, что вначале совершается в практических действиях с конкретными предметами, их изображениями или условными обозначениями.

Согласно теории П.Я. Гальперина происходит это следующим образом: практические и материализованные внешние действия детей, отражаясь в устной речи, переносятся во внутренний план, в мысль. Развитие мысли проходит ряд этапов. На каждом из них с разной глубиной происходит отражение практически производимого материализованного действия.

Характерными особенностями практического метода при формировании элементарных математических представлений являются:

выполнение разнообразных практических действий, служащих основой для умственных действий;

широкое использование дидактического материала;

возникновение представлений как результата практических действий с дидактическим материалом;

выработка навыков счёта, измерения, вычисления и рассуждения в самой элементарной форме;

широкое использование элементарных математических представлений в практической деятельности, быта, игре, труде, т. е. в других видах деятельности.

Практический метод предполагает организацию упражнений. В процессе упражнений ребёнок неоднократно повторяет практические и умственные действия. Упражнения могут предлагаться детям в форме заданий, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным дидактическим материалом. Используются как коллективные (выполняются всеми детьми одновременно), так и индивидуальные (у стола воспитателя) формы выполнения упражнений.

Коллективные упражнения, помимо усвоения и закрепления знаний, могут использоваться для контроля. Индивидуальные упражнения, выполняя те же функции, служат образцом, на который дети ориентируются в коллективной деятельности. Взаимосвязь между ними определяется не только общностью функций, но и постоянным чередованием, закономерной сменой друг друга. Упражнения должны дифференцироваться по степени сложности с учётом индивидуальных особенностей детей.

Игровые элементы включаются в упражнения во всех возрастных группах: в младших - в виде сюрпризного момента, имитационных движений, сказочного персонажа и т. д.; в старших - приобретают характер поиска, угадывания, соревнования. В таких случаях говорят об игровых упражнениях или упражнениях в игровой форме.

С возрастом детей упражнения усложняются: они уже состоят из большего числа звеньев, учебно-познавательное содержание выступает в них прямо, не маскируясь практической или игровой задачей, во многих случаях для их выполнения требуется проявление смекалки, сообразительности.

Наиболее эффективны комплексные по характеру упражнения, дающие возможность одновременно решать несколько программных задач из разных разделов, органически сочетающихся друг с другом, например: «количество и счёт» и «величина»; «количество и счёт» и «Геометрические фигуры» и т. д. Такие упражнения повышают коэффициент полезного действия занятия, увеличивают его плотность. Содержательность упражнений обеспечивает достаточно высокой уровень умственной нагрузки на дошкольников в процессе всего занятия. (см. Приложение 1)

При подборе упражнений учитывается не только их «сочетаемость» в одном занятии, но и дальнейшая перспектива. Система упражнений на одном занятии должна органично вписываться в общую систему разнообразных упражнений, проводимых в течение года. [11, 114-116]

Упражнения могут быть репродуктивными, основанными на воспроизведении способа действия, в которых действия детей полностью регламентируются воспитателем в виде образца, предписания, требований, инструкции, правил (алгоритмов), определяющих, что и как надо делать. Ход и результат упражнения находится под непосредственным наблюдением и контролем воспитателя, который своими указаниями, пояснениями, непосредственной помощью корректирует действия детей. Обучение счёту, измерению, простейшим вычислениям и связанным с ними рассуждениями требует большого количества таких упражнений. [10, 54]

Продуктивные упражнения характеризуются тем, что способ действия дети должны полностью или частично открыть сами. Они развивают самостоятельность мышления, вырабатывают целенаправленность и целеустремлённость. Воспитатель обычно говорит, что надо делать, но не сообщает и не демонстрирует способа действия. При выполнении упражнений ребёнок прибегает к мыслительным и практическим пробам, выдвигает предположения и проверяет их, мобилизирует имеющиеся знания, учится использовать их в новой ситуации, проявляет сообразительность, смекалку. При выполнении таких упражнений воспитатель оказывает помощь лишь в косвенной форме, предлагает детям подумать ещё раз попробовать, одобряет правильные действия, напоминает об аналогичных упражнениях, которые ребёнок уже выполнял и т.д. [11, 116]

Однако излишнее использование практических методов, задержка на уровне практических действий может отрицательно сказываться на ребёнке. [13, 99]

2.2 Игра - как метод математического развития

При формировании элементарных математических представлений игра выступает, как метод обучения и может быть отнесена к практическим методам.

Широко используются разнообразные дидактические игры. Благодаря обучающей задаче, облечённой в игровую форму (игровой замысел), игровым действиям и правилам ребёнок непреднамеренно усваивает определённую «порцию» познавательного содержания. Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представлений у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время. Все они выполняют основные функции обучения - образовательную, воспитательную и развивающую. [11, 117]

 Все дидактические игры по формированию элементарных математических представлений разделены на несколько групп:

1. Игры с цифрами и числами

2. Игры путешествие во времени

3. Игры на ориентировки в пространстве

4. Игры с геометрическими фигурами (см. Приложение 2)

5. Игры на логическое мышление

Знания в виде способов действий и соответствующих им представлений ребёнок получает первоначально вне игры, в играх лишь создаются благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических игр не позволяет сообщить детям новые знания, однако это не означает что в принципе такое невозможно. [11, 118]

В настоящее время разработана система так называемых обучающих игр. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя получить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка мышления дошкольника к восприятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, подобранный по определённым признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества на классы, отыскание объектов по необходимым и достаточным критериям и т. д. Игры, содержание которых ориентировано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщёнными представлениями, формируют логические структуры мышления. [3, 94]

Дидактические игры выполняют обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и формами работы по формированию элементарных математических представлений.

При подборе дидактических игр для занятий, индивидуальной работы с детьми воспитатель обращается к разнообразным источникам, использует народные и авторские игры, с предметами и без них.

Дидактические игры могут применяться в качестве одного из методов проведения занятий, индивидуальной работы, быть формой организации самостоятельной познавательной деятельности детей.

Игра как метод обучения и формирования элементарных математических представлений предполагает использование отдельных элементов разных видов игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровых приёмов (сюрпризный момент, соревнование, поиск и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности ребёнка. [11, 118-119]

Обеспечить всестороннюю математическую подготовку детей всё-таки удаётся при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен. [13, 102]

2.3 Наглядные и словесные методы

Наглядные и словесные методы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей.

К наглядным методам обучения относятся: демонстрация объектов и иллюстраций, наблюдение, показ, рассматривание таблиц, моделей. К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. [13, 99-100]

1. Демонстрация воспитателем способа действия в сочетании с объяснением. Это основной приём обучения, он носит наглядно-действенный характер, выполняется с помощью разнообразных дидактических средств, даёт возможность формировать навыки и умения у детей. К нему, как правило, предъявляют следующие требования:

чёткость, «пошаговая» расчленённость демонстрации;

согласованность действий со словесными пояснениями;

точность, краткость и выразительность речи, сопровождающей показ способов действия;

активизация восприятия, мышления и речи детей.

Этот приём чаще всего используется при сообщении новых знаний.

2. Инструкция по выполнению самостоятельных заданий (упражнений). Приём связан с показом воспитателем способов действия и вытекает из него. Инструкция сообщает, что, как и в какой последовательность надо делать, чтобы получился необходимый результат.

В старших группах инструкция носит целостный характер, даётся полностью до выполнения задания, в младших - сочетается с ходом его выполнения, предваряя каждое новое действие.

3. Пояснения, разъяснения, указания. Эти словесные приёмы используются воспитателем при демонстрации способов действия или в ходе выполнения детьми задания, чтобы предупредить ошибки, преодолеть затруднения и т. д. Они должны быть краткими, конкретными, живыми и образными. [13, 119]

«Слово-Стекло», - говорил лингвист А.А. Потебня. Через слово должно всегда просвечивать его предметное содержание. Поэтому слово воспитателя должно быть всегда ясным и точным. [4, 146]

4. Вопросы к детям. Это одно из основных приёмов формирования элементарных математических представлений у детей во всех возрастных группах. Они могут быть:

репродуктивно - мнемические (Что это такое? Какого цвета флажки? И т. д.)

репродуктивно - познавательные (Сколько будет на полке кубиков, если я поставлю ещё один? И т. д.)

продуктивно - познавательные (Что надо сделать, чтобы кружков стало поровну? И т. д.) [8, 43]

Вопросы активизируют восприятие, память, мышление, речь детей. При формировании элементарных математических представлений обычно используется серия вопросов, начиная от боле простых, направленных на описание конкретных признаков, свойств предметов, результатов практических действий, т. е. констатирующих факты, до более сложных, требующих установления связей, отношений, зависимостей, их обоснования и объяснения, использования простейших доказательств. Чаще всего такие вопросы задаются после демонстрации образца воспитателем или выполнения задания ребёнком. [6, 76]

Разные по характеру вопросы вызывают различный тип познавательной деятельности: от репродуктивной, воспроизводящей изученный материал, до продуктивной, направленной на решение проблемных задач.

Некоторые основные требования к вопросам воспитателя как методическому приёму:

точность, конкретность и лаконизм;

логическая последовательность;

разнообразие формулировок, т. е. об одном и том же следует спрашивать по-разному;

оптимальное соотношение репродуктивных и продуктивных вопросов в зависимости от возраста детей, изучаемого материала;

вопросы должны будить мысль ребёнка, развивать его мышление, заставлять задумываться, анализировать, сравнивать, сопоставлять, обобщать;

количество вопросов должно быть небольшим, но достаточным, чтобы достичь поставленную дидактическую цель;

следует избегать подсказывающих и альтернативных вопросов.

Вопросы следует рассматривать как эффективное средство активизации познавательной деятельности детей. Они предлагаются обычно всей группе, а ответ даёт один ребёнок. В отдельных случаях возможны и групповые ответы, что характерно для младших дошкольников.

Старших дошкольников необходимо учит формулировать вопросы самостоятельно. Педагог учит правильно формулировать вопросы по результатам непосредственного сравнения отдельных предметов, групп предметов и т. д., при этом дети успешнее овладевают умением задавать вопросы в тех случаях, когда они адресуются конкретному лицу - воспитателю, товарищу, родителям.

Существуют также методические требования к ответам детей. Ответы должны быть:

кратким или полным в зависимости от характера вопроса;

самостоятельными и осознанными;

точными, ясными, достаточно громкими;

грамматически правильными

В работе с дошкольниками воспитателю часто приходиться прибегать к приёму переформулировки ответов, придавая им правильную форму.[11, 121]

Система вопросов и ответов детей в педагогике называется беседой. [13, 101]

5. Словесные отчёты детей. Этот методический приём складывается из вопроса воспитателя, требующего после выполнения детьми рассказать, что и как они делали и что получилось в итоге, и собственно детских ответов на вопрос. Слово помогает вычленить действие, осмыслить результат. На первых порах педагог помогает детям, даёт образец отчёта, постепенно они самостоятельно рассказывают о своих действиях, оперируя математическими представлениями.


Информация о работе «Методы математического развития»
Раздел: Педагогика
Количество знаков с пробелами: 37065
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
19781
8
1

... опираться на теорию множеств, математическую логику, теорию алгоритмов. На основе применения «неколичественного» математического аппарата в теоретическом языкознании сформировалось направление, условно называемое комбинаторной лингвистикой – в ней используются методы математической статистики теории вероятностей, теории информации, математического анализа Современные инструментальные методы ...

Скачать
40852
38
0

... на прибыль и построена адекватная математическая модель и спрогнозирована прибыль на последующие периоды. В процессе выполнения работы изучили и научились применять на практике следующие методы математической статистики: ü  линейный регрессионный анализ, ü  множественный регрессионный анализ, ü  корреляционный анализ, ü  проверка стационарности и независимости выборок, ...

Скачать
12199
0
0

... трудности в освоении математики, - несоответствие уровня представлений, которые используются в преподавании, и уровня представлений, на котором в данный момент находится ученик. 3. Процесс математического развития младшего школьника в учебной деятельности окажется более эффективным, если система методов формирования и развития его мышления в обучении математике будет базироваться на развитии его ...

Скачать
116560
0
4

... нашего исследования математического развития ребенка дошкольного и младшего школьного возраста предложено возможное решение: непрерывная преемственная методическая система математического развития ребенка в системе дошкольного и начального школьного образования. Многолетняя апробация разработанной в ходе исследования системы хорошо себя зарекомендовала и подтвердила ее практическую значимость. ...

0 комментариев


Наверх