2.1 Аминокислоты

 

Аминокислотами называются соединения, в молекулах которых содержатся одновременно аминные и карбоксильные группы.В зависимости от положения аминогруппы по отношению к карбоксильной группе различают α-, β-, γ-аминокислоты. Наибольшее значение в процессах жизнедеятельности играют α-аминокислоты, из них как раз состоят белки.

Чаще используют тривиальные названия. Наиболее важные кислоты представлены в таблице.

Таблица"Важнейшие α-аминокислоты"

Аминокислота

Формула

Условное обозначение

Тпл0C

Глицин

формула

Гли

292

Аланин

формула

Ала

297

Валин

формула

Вал

315

Лейцин

формула

Лей

337

Изолейцин

формула

Илей

284

Аспаргиновая кислота

формула

Асп

270

Глутаминовая кислота

формула

Глу

249

Орнитин

формула

Орн

140

Лизин

формула

Лиз

224

Серин

формула

Сер

228

Треонин

формула

Тре

253

Цистеин

формула

цис-SH

178

Цистин

формула

цис-S

 |

цис-S

260

Метионин

формула

Мет

283

Фенилаланин

формула

Фен

275

Тирозин

формула

Тир

344

Триптофан

формула

Три

382

Пролин

формула

Про

299

Оксипролин

формула

Про-ОН

270

Гистидин

формула

Гис

277

Аргинин

формула

Арг

238

Аспаргин

формула

Асн

236

Глутамин

формула

Глн

185

Физические свойства

Аминокислоты - бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300·С. Многие а-аминокислоты имеют сладкий вкус [5].

 

2.2 Способы получения

Для получения а-аминокислот в лабораторных условиях обычно используют два следующих способа.

1. Взаимодействие а-галогенкарбоновых кислот с избытком аммиака. В ходе этих реакций происходит замещение атома галогена в галогенкарбоновых кислотах (об их получении см. § 10.4) на аминогруппу. Выделяющийся при ЭТОМ хлороводород связывается избытком аммиака в хлорид аммония.

2. Гидролиз белков. При гидролизе белков обычно образуются сложные смеси аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

 

2.3 Химические свойства

 

Основные свойства аминов  кислотные свойства карбоновых кислот

Амфотерные свойства

1. Взаимодействие с основаниями и с кислотами:

а) как кислота (участвует карбоксильная группа):

б) как основание (участвует аминогруппа)

2. Взаимодействие внутри молекулы- образование внутренних солей

3. Взаимодействие аминокислот друг с другом- образование пептидов

 

2.4 Значение и применение аминокислот

 

Аминокислоты и их производные используются в качестве лекарственных средств в медицине. Так глицин оказывает укрепляющее действие на организм и стимулирует работу мозга. Лизин и метионин применяются в качестве добавок в корм сельскохозяйственным животным. Человеческий организм может синтезировать 12 из 20 аминокислот. Остальные восемь должны поступать в организм в готовом виде вместе с белками пещи, поэтому они называются незаменимыми. Незаменимые аминокислоты включают изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин и (для детей) гистидин. При ограниченном поступление такой аминокислоты в организм она становится лимитирующим веществом при построении любого белка, в состав которого она должна входить. Если такое случается, то единственное, что может предпринять организм, - это разрушить собственный белок, содержащий эту же аминокислоту. Большинство животных белков содержат все восемь незаменимых аминокислот в достаточных количествах. Любой белок, имеющий необходимое содержание всех незаменимых аминокислот, называется совершенным. Растительные белки несовершенны: в них низок уровень некоторых незаменимых аминокислот. Хотя ни один из растительных белков не может обеспечить нас всеми незаменимыми аминокислотами, смеси таких белков - могут. Такие комбинированные продукты питания, которые содержат взаимодополняющие (комплементарные) белки, входят в состав традиционной кухни всех народов мира [5,6].


ГЛАВА 3. ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ИЗУЧЕНИЯ ТЕМЫ «АМИНОКИСЛОТЫ»

Человеческое тело не может запасать белки, поэтому сбалансированное белковое питание требуется человеку каждый день. Взрослому человеку весом 82 кг требуется 79 г белка в день. Рекомендуется, чтобы при этом с белками поступало 10 - 12% всех калорий. L-триптофан - незаменимая аминокислота с обширным спектром действия. Он участвует в поддержании азотистого равновесия в обменных процессах, актах возбуждения и торможения, а также трансформации одного вида энергии в другой. Образующаяся из триптофана никотиновая кислота является важным компонентом в энергетическом обмене. L-триптофан регулирует функцию эндокринного аппарата, предупреждающего анемию, регулирующего кровяное давление, отвечающего за синтез гемоглобина. Особое значение эта аминокислота имеет в фармакологии, где она и ее производные применяются в качестве ингредиентов многих лекарственных средств. При таких тяжелых заболеваниях, как рак, туберкулез, диабет триптофан способствует нормальному функционированию различных систем организма. Недостаток его у человека и животных ведет к развитию пеллагры, поражению зубов, помутнению роговицы глаз, катаракты. Установлено, что у пациентов, имеющих активную форму депрессии, наблюдается пониженный уровень триптофана в плазме. Предполагают, что эта аминокислота стимулирует секрецию инсулина, который в свою очередь активизирует синтетазу жирных кислот в печени. L-триптофан содержится в препаратах, восстанавливающих функции мозга. Известно, что в зонах повышенной радиации и инсоляции и при лечении лучевой болезни употребление пищи, обогащенной L-триптофаном, повышает уровень серотонина и снимает такие отрицательные последствия, как геморрагический синдром. Триптофан используется как антиокислитель пищевых масел и жиров, в качестве общего повышения калорийности пищи, особенно содержащей бобовые и кукурузу. В Японии фирма Kyowa Hakko Ajinomoto производит L-триптофан для медицинских и пищевых целей с использованием штаммов микроорганизмов, работающих на низкомолекулярных субстратах. В Кыргызстане в рамках Государственных научно-технических и Целевых Комплексных программ СССР сотрудники ВНИИгенетика и специалисты Бишкекского завода антибиотиков создают уникальное опытно-промышленное производство по микробиологическому синтезу L-триптофана. На основе лабораторного регламента они отрабатывают технологию и выпуск аминокислоты методом глубинного выращивания штаммапродуцента Bactilis subtilis на мелассных средах. Технология получения аминокислоты представляет собой последовательный ряд операций, к которым относятся ферментация, обработка культуральной жидкости коагулянтами, выделение аминокислот из нативного раствора с помощью ионообменных смол, концентрирование растворов и очистка технического продукта осветляющими активированными углями. Необходимо отметить, что микробиологический синтез аминокислот связан с существенным расходом воды и образованием значительных количеств жидких и твердых отходов. Принимая во внимание, что в производстве L-триптофана необходимо соблюдать жесткий санитарно-гигиенический режим, создание малоотходной технологии является одной из актуальных проблем [7].

По регламенту все виды отходов, включая жидкие стоки, собирают, обезвоживают. Сухой шлам обеззараживают, затаривают в мешки для последующего захоронения. При выделении L-триптофана жидкие стоки образуются за счет промывных вод производственного оборудования, стадии ионообменной хроматографии, маточников кристаллизации, некондиционных растворов посевного материала и культуральной жидкости. Обеззараживание значительных объемов стоков (более 1 м3 на 1 кг целевой аминокислоты) создает дополнительные финансовые затраты, отражающиеся на себестоимости триптофана. Дифференцированные стоки, как показали исследования химического состава, могут служить сырьем для вторичной переработки. Учитывая, что сбрасываемые стоки имеют температуру выше 40oС, их можно рассматривать как готовый исходный субстрат для проведения процесса метаногенеза органического вещества. Бросовые осадки биомассы продуцентов аминокислот, образующиеся на стадии тепловой и химической обработки культуральной жидкости, и отработанные активированные угли со стадии осветления технического продукта так же, как и канализационные стоки имеют температуру 40-60oС, что служит положительным фактором в пользу анаэробного сбраживания органического вещества этого вида сырья метаногенным консорциумом микроорганизмов. [8]. Потребление аминокислоты метаногенным консорциумом микроорганизмов, т.е. практически полное разложение триптофана, как видно на рисунке, происходит в течение 18 суток и выходе биогаза свыше 10 мМ. На основании исследований установлено, что этот процесс происходит вначале с разложением линейной цепи, а затем деградации ароматического кольца аминокислоты.

Накопление биогаза и конверсия аминокислоты при анаэробной микробиологической конверсии триптофана.

Поскольку в жидких отходах содержание органических веществ (ОВ) может изменяться в зависимости от количества некондиционных растворов культуральной жидкости и маточников кристаллизации триптофана в условиях производства, стоки, получаемые от регламентных стадий выделения аминокислот рассматривают как технологические канализационные. О количестве ОВ в этих стоках, а их всего 9 видов, судят по показателям биологического (БПК) и химического (ХПК) потребления кислорода. Высокие значения этих двух показателей наблюдаются у промывных вод ионита ИА-1 после сорбции и в стоке после промывки производственного оборудования, соответственно для первого 300 и 400 и второго - 975 и 1400 мгО2/л. Технологические стоки собирают в один сборник, после усреднения и взаимной нейтрализации у них показатели БПК и ХПК приближаются к нормативному требованию и составляют 392-420 и 560-580 мгО2/л. Биоконверсия таких стоков в течение 1500 ч в термофильном режиме показала, что через 750 ч процесс образования метана выходит на стабильный режим, а полученный трансформированный раствор не требует дальнейшего обеззараживания, так как является экологическим жидким биоудобрением. В плане охраны окружающей среды метаногенез такого стока позволяет исключить из технологического цикла стадию стерилизации, высушивания и захоронения шлама. Реализация нового вида продукции - удобрения - существенно отражается на повышении общей рентабельности производства.

Биоконверсия трапных операций культуральных жидкостей (КЖ), маточников кристаллизации (МК) и их смесей показала, что при времени оборота реактора 552 ч степень конверсии органических веществ составляет 48,0; 21,6 и 34,8% (табл. 1). Для сопоставления результатов трансформации жидких отходов показатели по выходу биогаза и степени конверсии отнесены к единому компоненту - органическим веществам. Различная степень конверсии, как видно из табл. 2, повидимому, может трактоваться особенностями метаногенеза триптофана и других органоминеральных примесей, содержащихся в данных субстратах (табл. 2). Проведенные исследования свидетельствуют, что анаэробная обработка указанных жидких отходов метаногенным консорциумом микроорганизмов в производственном цикле приемлема и экономически оправдана, так как температура выбрасываемых продуктов составляет 40-60oС, и для них нет необходимости проводить дополнительный нагрев для осуществления процесса метаногенеза.

Таблица 1. Расчетные показатели конверсии отходов триптофана

Вид отхода

Содержание сухих веществ, %

Содержание органических веществ, %

Выход биогаза, л/г ОВ

Конверсия, ОВ,%

КЖ триптофана

10,2

90,5

0,387

48,0

Маточник кристаллизации (МК)

35,4

88,0

0,154

21,6

Смесь КЖ + МК

22,8

89,3

0,270

34,8

Таблица 2. Конверсия отработанных активных углей производства триптофана (временя удерживания - 23 суток)

Содержание органического вещества (ОВ), % Содержание углерода, % Содержание азота, % Превращение вещества в биогаз - исходное на угле Конвертированное
90,91 92,75 72,8 4,94 4,45

В триптофановом производстве большие проблемы связаны с утилизацией осадков биомассы продуцентов триптофана (ОБПТ) и отработанных осветляющих активированных углей.

Крупномасштабная реализация биогазовой технологии в производстве триптофана требует выяснения степени конверсии ОВ названных продуктов. Биоконверсия отработанного активированного угля в микробиологическом синтезе триптофана обусловлена самой технологией использования осветляющих активированных углей. В условиях производства отработанный уголь представляет собой горячую массу, которая по регламенту высушивается и отправляется на утилизацию. При этом необходимо учитывать, что при сушке угля вместе с влагой десорбируется значительное количество загрязнений и происходит дополнительный расход энергоносителей. Исследования по биоконверсии отработанных активированных углей триптофанового производства позволяют сделать вывод, что при культивировании термофильного природного метаногенного консорциума на отработанных углях наблюдалась типичная картина, характерная для конверсии чистого триптофана (табл.2).При этом значение коэффициента газификации (КГ), вычисленное из отношения суммы выделившихся метана и диоксида углерода к органическому веществу, как видно из табл. 2, составляет 90%. Высокий процент сорбированных веществ углем, а также его мелкодисперсность позволяют рассматривать процесс биоконверсии в анаэробных условиях этого вида отхода экономически и экологически более выгодным. Превращение органического вещества водной суспензии осадка биомассы продуцента триптофана при времени удерживания 23 суток в термофильном режиме метаногенным консорциумом микроорганизмов, как показали исследования, составило 61%, и этот показатель значительно выше наблюдаемого для растворов КЖ (48%) и представленного в табл. 1.

Таблица 3

Состав субстрата для анаэробной конверсии из смеси отходов осадка биомассы продуцента триптофана и культуральной жидкости

№опыта

Соотношение компонентов- культуральная жидкость, % Соотношение компонентов- осадок биомассы продуцента, % Содержание твердого вещества, % Содержание органического вещества, %
1 90 10 19,2 86,0
2 80 20 28,2 81,7
3 75 25 32,7 79,5
4 50 50 55,1 68,6
5 25 75 77,6 57,5

Более высокий показатель деградации ОВ осадка биомассы продуцента триптофана, возможно, связан с содержанием в нем фосфатов и пептидов, которые выполняют роль активирующих ростовых примесей. Поэтому для сравнения был проведен метаногенез ОБПТ в различном соотношении с раствором культуральной жидкости (табл. 3).

Как и следовало ожидать, выход биогаза (0.43 л/г) и степень конверсии ОВ (57,8%) были выше для смеси ОБПТ+КЖ в соотношении 75:25.

Таким образом, одним из путей экологически оправданной утилизации отходов и обеззараживания стоков триптофанового производства может служить их довольно легко осуществимый метаногенез, который способен стать одной из альтернативных возможностей вторичного использования бросовых продуктов для выпуска экологического удобрения, повторного использования тепла и дополнительного получения энергоносителя в виде биогаза [9,10].


ГЛАВА 4. МОИ УРОКИ

 

Урок по теме: "Аминокислоты. Белки"

“Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка”.

Ф. ЭНГЕЛЬС

Цели:

1.   обучающая: обеспечить сознательное усвоение учащимися важнейших химических законов, понятий, теорий в контексте изучения аминокислот и белков.

2.   развивающая: формировать высокий уровень мыслительной деятельности, научить использовать в решении повседневных задач различные мыслительные приемы.

3.   Воспитывающая: показать диалектическую взаимосвязь и взаимообусловленность химических фактов. Довести до учащихся мысль о том, что опровергаются только теории, факты опровергнуть нельзя. С помощью межпредметных связей способствовать формированию картины мира.

Оборудование:

1.   Листы с заданиями экспресс теста, бланки ответа на тест (для каждого ученика по два листа, скрепленных скрепкой, между которыми вложена копировальная бумага). (Приложение 1)

2.   Листы с текстом для изучения (по одному на парту). (Приложение 2)

3.   Оформление доски:

На доске записана тема урока, на листах формулы и названия аминокислот, для изучения функций белков на листах: типы и примеры в центре записаны функции белков.

4.   Оборудование для проведения лабораторного эксперимента:

Продукты питания: молоко, молочные продукты (простокваша, сметана, кефир, творог и др.), мука (смесь с водой), крупа (любая крупа, размоченная или разваренная до кашеобразного состояния), бобовые (горох, фасоль, бобы, соя), размельченные мясо и рыба, замоченные дрожжи, желатин.

Пробирки, 10%-ный раствор гидроксида натрия, 1%-ный раствор сульфата меди.

Методика проведения опыта: К 0,5 мл раствора белка добавляют столько же 10%-ного раствора гидроксида натрия (калия) и 6-10 капель 1%-ного раствора сульфата меди (II). Голубая окраска раствора, свойственная солям меди (II), по мере образования комплексного соединения переходит в сиреневую.

5. Листы с заданиями для работы в группах.

Этапы урока:

1.   Вводное слово учителя. Постановка целей урока.

2.   Экспресс – тест по темам «Аминокислоты. Белки». Проверка и обсуждение результатов.

3.   Работа с текстом в парах по теме «История открытия и изучения белков».

4.   «Типы белков и их функции в организме человека» дидактическая игра.

5.   Лабораторный эксперимент по теме «Обнаружение белков в пищевых продуктах».

6.   Рассказ учителя о превращениях белков в пищеварительной системе.

7.   Решение познавательных задач с практическим содержанием (работа в группах).

8.   Подведение итогов урока. Выставление оценок. Обозначение дальнейших тем.

ХОД УРОКА

1. Вводное слово учителя. Постановка целей урока.

Белки – это важнейшие для жизни вещества. Белки – основной структурный компонент тканей. Посмотрите на своего соседа. Все, что вы видите: кожа, волосы, глаза, ногти, - это белки. Костные ткани, кровь, мозг – все содержит белки. Кроме того, все ферменты, контролирующие химические процессы в организме, представляют собой белки. В каждом человеке десятки различных белков.

На предыдущих уроках мы с вами изучили состав, строение и свойства аминокислот, состав и структуру белков. Сегодня мы расширим наши знания. Узнаем истории открытия и изучения белков, о разнообразии белков, их функциях в организме человека, свойствах, проведем ряд опытов, подтверждающих наличие белков в продуктах питания, и обсудим превращения белков в пищеварительной системе. В завершение урока мы будем решать познавательные задания с практическим содержанием.


Информация о работе «Развитие экологического мышления на уроках химии при изучении темы "Аминокислоты"»
Раздел: Педагогика
Количество знаков с пробелами: 54960
Количество таблиц: 8
Количество изображений: 15

Похожие работы

Скачать
75897
3
3

... мира, которая реально воздействует на формирование мировоззренческой компоненты их развития как личностей. Вашему вниманию представляется урок на тему: «Полимеры», наполненный экологическим содержанием, позволяющий оценить важную роль перспективы развития экологического самосознания школьников, выявить взаимосвязь между изучаемым объектом и окружающей средой, а также определить роль уроков химии ...

Скачать
34567
1
1

... и гигиеническими требованиями); •  соответствие учебной и физической нагрузки возрастным возможностям ребенка; •  необходимый, достаточный и рационально организованный двигательный режим. Под здоровьесберегающей образовательной технологией (Петров) понимает систему, создающую максимально возможные условия для сохранения, укрепления и развития духовного, эмоционального, интеллектуального, ...

Скачать
68936
2
7

... весь цилиндр. Это опыт демонстрирует одну из биологических функций железа. По химической природе, каталаза – геминовый фермент, содержащий железо. [3] 2. Разработка темы «Основания» в курсе неорганической и органической химии 2.1 Урок по теме «Основания»   Цели урока: познакомить учащихся с новым классом химических соединений – основаниями, их свойствами (отношение к воде, действие на ...

Скачать
55680
7
7

... современного состояния науки и содержания предметной области “Химия” и “Биология” в средней общеобразовательной школе. Она соответствует требованиям Государственного образовательного стандарта школьного курса по химии, биологии и представляет собой модульную обучающую систему, в которой ученик самостоятельно приобретает знания, а учитель осуществляет мотивированное управление его обучением ( ...

0 комментариев


Наверх