2. Аналогічно для квадратурної формули „правих прямокутників" отримуємо узагальнену формулу

 (2.1 18)

та похибку

 (2.1 19)

Геометричне зображення „формули правих прямокутників" наведене на рисунку (2.3).

Рис.2.3 Геометричне зображення „формули правих прямокутників”

3. Узагальнена квадратурна формула „центральних прямокутників" запишеться у вигляді:

 (2.1 20)

її залишок має вигляд

 (2.1 21)

Геометричне зображення „формули центральних прямокутників" наведене на рисунку (2.4).

Рис.2.4 Геометричне зображення „формули центральних прямокутників"

 

2.2 Метод трапецій

Квадратурна „формула трапеції” - це виключний випадок формули Н’ютона - Котеса (1.20), коли  [1]. Квадратурна формула трапеції має вигляд:

 (2.2.1)

Два коефіцієнти Котеса знаходимо, враховуючи їхні властивості

Тоді формула трапеції має вигляд

 (2.2.2)

Геометричне тлумачення наведене на рис.2.5 Геометрично цю формулу отримаємо, якщо криву  замінити хордою, яка проходить через точки  та , тоді інтеграл знаходиться як площа трапеції .

Рис.2.5 Геометричне тлумачення „формули трапецій”

Формула (2.2.2) наближена. Визначимо похибку для квадратурної формули трапеції:

Похибка квадратурної формули (2.2.2) випливає з (1.12), якщо взяти  та

 (2.2.3)

До обчислення останнього інтеграла застосуємо теорему про середнє [5].

Теорема. Нехай  - інтегровані на проміжку  функції, причому , на всьому проміжку не змінює знак. Тоді

 де

Якщо  неперервна на , то ця формула може бути записана у вигляді

 де

Застосуємо цю теорему до інтеграла (2.2.3). За припущенням функція  є неперервною на , тому знайдеться така точка , що буде виконуватися рівність.

Отже,

 (2.2.4)

Якщо відрізок  достатньо великий, то похибка (2.2.4) квадратурної формули трапеції, як правило, велика. Для збільшення точності розділимо відрізок інтегрування на  частин точками , тоді

Якщо розбиття рівномірне, тобто , то

Запишемо окремо узагальнену формулу трапеції і окремо її похибку:

 (2.2.5)

 (2.2.6)

Величина -середнє арифметичне значень другої похідної в точках відрізку . Очевидно, що , де -найменше значення, а -найбільше значення другої похідної , . Оскільки  неперервна на , то в якості своїх значень на  вона приймає всі проміжні числа між  і . Отже, існує така точка , що , тобто

 (2.2.7)

На рис (2.6) показано геометричне зображення узагальненої формули трапеції (2.2.5).

Рис.2.6 Геометричне зображення узагальненої формули трапецій

Точне значення інтеграла, тобто ліва частина наближеної рівності (2.2.5) це площа криволінійної трапеції, що обмежена зверху графіком функції . Наближене значення інтеграла (права частина рівності (2.2.5) - це площа фігури, що зверху обмежена ламаною  (рис.2.6).

З формули (2.2.7) видно, що чим більшим є число , тим меншою буде похибка квадратурної формули (2.2.5). Крім того, з (2.2.7) видно, що алгебраїчний степінь точності і квадратурної формули трапеції дорівнює одиниці (так же, як і формули центральних прямокутників).

2.3 Метод Симпсона

Якщо в квадратурній формулі Ньютона-Котеса (2.12) взяти  то здобудемо таку формулу [1]

 (2.3.1)

За формулою (2.11) знаходимо . Врахувавши властивості коефіцієнтів Котеса, знаходимо .

Після підстановок знайдених коефіцієнтів Котеса в формулу (2.3.1), отримуємо квадратурну формулу, яка називається „формулою Симпсона” або „формулою парабол”:

 (2.3.2)

Рис.2.7 Геометричне тлумачення „формули парабол"

Назва квадратурної формули (2.3.2) як „формула парабол" випливає з геометричного тлумачення інтеграла, якщо криву  замінити параболою, що проходить через три точки  (на рис.2.7 парабола показана пунктиром) і наближене значення інтеграла обчислювати як площу криволінійної трапеції, яка зверху обмежена графіком цієї параболи.

Знайдемо залишковий член квадратурної формули Симпсона. Для цього з наближеної рівності (2.3.2) запишемо формулу для похибки

 (2.3.3)

Розкладемо функцію  у ряд Тейлора в околі точки , припускаючи функцію  такою, що розкладання можливе [7]:

Знайдемо точне значення інтеграла:

 (2.3.4)

 

Тепер знаходимо

 (2.3.5)

Підставимо (2.3.3) і (2.3.5) у праву частину рівності (2.3.4):

Отже похибка квадратурної формули Симпсона може бути записана у вигляді

 (2.3.6)

З формули (2.3.6) видно, що алгебраїчний степінь точності квадратурної формули Симпсона дорівнює трьом, тобто ця формула має підвищений степінь точності.

Формулу Симпсона також можна застосовувати не до всього відрізка інтегрування, а до окремих його частин. Для цього поділимо відрізок  на  частин рівної довжини  кожний, як показано на рисунку (2.8)

Рис.2.8 Геометричне тлумачення формули Симпсона

Візьмемо -й подвоєний відрізок, функцію  проінтегруємо на цьому відрізку, використовуючи квадратурну формулу (2.3.1) з похибкою (2.3.5)

.

Просумувавши інтеграли за всіма подвоєними відрізками, добудемо узагальнену формулу Сімпсона

Якщо прийняти умову, що відстань між будь-якими двома сусідніми вузлами однакові і дорівнює , то останню формулу можна переписати в більш простому вигляді

Тепер запишемо окремо узагальнену формулу Сімпсона та її похибку

 (2.3.7)

 (2.3.8)

Геометричне зображення формули (2.3.7) показане на рисунку (2.8).

Наближене значення інтеграла (права частина наближеної рівності (2.3.7) - це площа криволінійної трапеції, яка зверху обмежена кусками парабол  (крива показана пунктиром).

На кожному подвоєному відрізку графік функції  наближається своєю параболою.

З формули (2.3.7) видно, що з ростом  похибка дуже швидко зменшується.

2.4 Практичне порівняння точності методів наближеного обчислення інтегралів 3-ма методами

Застосовуючи ці три метода наведемо приклад:

Обчислимо наближене значення інтеграла

,

використовуючи квадратурні формули прямокутників, трапеції та Сімпсона. Для цього підготуємо таблицю значень підінтегральної функції  у точках відрізка

Значення підінтегральної функції у вузлах
i

xi

f (xi)

0 0 0,00000000
1 0,1 0,10049875
2 0,2 0, 20396078
3 0,3 0,31320918
4 0,4 0,43081316
5 0,5 0,55901695
6 0,6 0,69971418
7 0,7 0,85445885
8 0,8 1,0244998
9 0,9 1,2108262
10 1 1,4142135

Квадратурні формули прямокутників (лівих, правих, центральних) дать такі результати:

,

У цьому прикладі інтеграл такий, що його точне значення можна обчислити, воно дорівнює (з точністю до сьомого розряду після коми)

Зауважимо, що хоча формула центральних прямокутників у цьому прикладі використана з вдвічі більшим кроком, ніж формули лівих та правих прямокутників, але результат вийшов ближчим до точного, ніж у двох інших методів.

За квадратурними формулами трапецій та Симпсона маємо такі результати:

Отже після обчислень за різними квадратурними формулами маємо такі наближені значення інтеграла:

; ;

З використаних формул більш точною є формула Симпсона, оскільки її алгебраїчний степінь точності на дві одиниці більший ніж у формули трапеції. Тому, користуючись апостеріорним методом оцінки похибки, в результаті, добутому за формулою Симпсона можна вважати три розряди після коми правильними, а четвертий розряд округленим тобто

Але, якщо порівняти з точним значенням інтеграла, то видно, що насправді результат, добутий за формулою Симпсона, має п’ять правильних розрядів після коми, шостий розряд округлений.


3. Графічне інтегрування

Задача графічного інтегрування полягає в наступному: за графіком неперервної функції  потрібно побудувати графік її первісної функції.

 (3.1)

Іншими словами, потрібно побудувати таку криву , ордината в кожній точці якої чисельно дорівнює площі криволінійної трапеції з основою , обмеженою даною кривою .

Для наближеної побудови графіка первісної функції  розбиваємо площу відповідної криволінійної трапеції, обмеженої кривій , на вузькі вертикальні смужки за допомогою ординат, проведених у точках  (рис.3.1) [2].

Рис.3.1 Графічне інтегрування функції f (x) з отриманням первісної функції F (x) [2]

Кожну з таких смужок заміняємо, використовуючи теорему про середнє, рівновеликим (по можливості) прямокутником з тією ж основою і висотою, рівною , ,де деяка проміжна точка -го по порядку відрізка , тобто думаємо:

 (3.2)

Де

 (3.3)

Значення первісної функції

 (3.4)

у точках  можна підрахувати методом нагромадження:

 (3.5)

Нехай - відповідні точки кривої . Проектуючи їх на вісь  одержимо точки (рис.3.1).

Виберемо тепер полюс  із відстанню  й проведемо промені . Розраховуєму первісну функцію - лінію приблизно можна замінити ламаною  з вершинами . Послідовні ланки цієї ламаної будуть паралельні відповідним променям, а саме: . Справді, кутовий коефіцієнт ланки на підставі формули (1) дорівнює

 (3.6)

У силу ж побудови кутовий коефіцієнт променів  якщо

 (3.7)

Отже

 (3.8)

Таким чином, технічно побудова графіка функції  може бути здійснена так:

із точки проводимо пряму паралельну променю , до перетину в точці з вертикаллю;

із точки проводимо пряму паралельну променю , до перетину в точці з вертикаллю  й так далі.

Слід зазначити, що при застосуванні даного методу графічного інтегрування точки не обов'язково брати рівновіддаленими. Для збільшення точності побудови рекомендуються характерні точки графіка інтегрувальної функції (нулі, точки екстремуму, точки перегину) обов'язково включати до складу точок .

Висновок: Графічне інтегрування володіє, взагалі говорячи, малою точністю. Тому цей прийом корисно використовувати тоді, коли потрібно мати загальне подання про інтеграл функції або коли підінтегральна функція задана графічно і її аналітичне вираження нам невідомо.


Список використаної літератури

1. Бойко Л.Т. Основи чисельних методів: навч. посібник. - Д.: Вид-во ДНУ, 2009. - 244 с.

2. Демидович Б.П., Марон И.А. Основы вычислительной математики. - М.: Изд-во „Наука” - „Физматлит", 1979. - 664 с.

3. Канторович А. В., Крылов В.И. Приближенные методы высшего анализа. - М.: Изд. Физико-математической литературы, 1962. - 708 с.

4. Крылов В.И. Вычислительные методы: учебное пособие / В.И. Крылов, В.В. Бобков, П.И. Монастырный. - М.: „Наука”, 1976. - Т.1. - 304 с.

5. Крылов В.И. Вычислительные методы: учебное пособие / В.И. Крылов, В.В. Бобков, П.И. Монастырный. - М.: „Наука”, 1977. - Т.2. - 399 с.

6. Марчук Г.И. Методы вычислительной математики. Схемы, таблицы. - М.: " Наука", 1977. - 456 с.

Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. - М.: „Наука”, 1970. - Т.2. - 800 с.


Информация о работе «Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"»
Раздел: Педагогика
Количество знаков с пробелами: 21512
Количество таблиц: 1
Количество изображений: 14

Похожие работы

Скачать
218746
21
0

... нтуватися на використання підручників [53; 54; 5]. У класах фізико-математичного спрямування доцільно орієнтуватись на використання підручників [53; 54; 5; 1].   РОЗДІЛ 2 ОСОБЛИВОСТІ ВИВЧЕННЯ МАТЕМАТИКИ У ПРОФІЛЬНИХ КЛАСАХ В СУЧАСНИХ УМОВАХ 2.1. ОСНОВНІ ПОЛОЖЕННЯ ПРОФІЛЬНОЇ ДИФЕРЕНЦІАЦІЇ НАВЧАННЯ МАТЕМАТИКИ Математика є універсальною мовою, яка широко застосовується в усіх ...

0 комментариев


Наверх