2.2 Поливинилхлорид и материалы на его основе

Поливинилхлорид (ПВХ) один из наиболее широко применяемых полимерных материалов и объемы производства его неуклонно возрастают, так как растет спрос на изделия из него. Это связано с тем, что механические свойства ПВХ материалов меняются в очень широких пределах, например от полной гибкости (искусственная кожа) до значительной жесткости (строительные профили), и зависят от состава исходной полимерной композиции. ПВХ материалы химически инертны и имеют хорошую свето- и погодостойкость. Они имеют одни из самых высоких электроизоляционных свойств среди полимеров и относятся к группе трудногорючих материалов. Снижение горючести у пластифицированных композиций достигается путем применения антипиренов.

Многие экстремистски настроенные члены различных организаций по защите окружающей среды и производители аналогичных материалов заявляют, что:

·           ПВХ высокогорючий материал;

·           Изделия из ПВХ во время эксплуатации выделяют большое количество ядовитых веществ, в том числе высокотоксичный винилхлорид (ВХ);

·           Производство и утилизация ПВХ приводит к образованию супертоксичных полихлорированных дибензопарадиоксинов (ПХДД) и бензофуранов (ПХДФ);

·           Изделия из ПВХ невозможно повторно использовать;

·           Производство и потребление ПВХ сопряжено с большими энергетическими затратами.

Для оценки правомочности таких заявлений приведем некоторые данные научных исследований и эксплуатации изделий из ПВХ.

Однако уже отмечалось ранее, что ПВХ – трудногорючий материал. Он горит только непосредственно в зоне огня. Вне пламени ПВХ гаснет. Благодаря этому его применяют в качестве полимерного замедлителя горения. В современных ПВХ пластиках применяются антипирены повышенной эффективности и с минимальным негативным воздействием на окружающую среду.

Винилхлорид из ПВХ и изделий из него не выделяется ни при каких условиях. Современные предприятия производят ПВХ с содержанием остаточного ВХ менее 10 млн-1. более того на некоторых производствах этот показатель снижен в 10 раз и составляет 1 млн-1. При разложении ПВХ (терморазложение, старение) деполимеризации не происходит.

Ученые-эксперты из университетов Германии и Швеции в течение трех лет изучали разные ПВХ продукты при захоронении их в земле. При этом определяли возможность выделения ВХ и аддитивов в процессе деградации ПВХ в земле. Результаты показали, что ПВХ устойчив в условиях захоронения в земле. Выделение пластификаторов и стабилизаторов может иметь место, но в таких количествах, которые не представляют опасности для окружающей среды, а ВХ не выделяется вообще.

Существуют данные о выделении свинца в воду из ПВХ труб, содержащих свинцовый термостабилизатор. Установлено, что содержание свинца в воде даже после использования ряда провоцирующих условий было в 8-10 раз меньше ПДК, установленной ВОЗ.

В процессе производства и сжигания ПВХ в окружающую среду могут выделяться ПХДД и ПХДФ. Однако эмиссия этих веществ находится на существенно более низком уровне, чем считалось ранее. Исследования, выполненные в Голландии, показали, что эмиссия диоксинов при неконтролируемом сжигании ПВХ и древесины составляет 6,67 мкг на тонну. Для сравнения, при неконтролируемом сжигании чистой древесины этих веществ образуется 3-28 мкг на тонну. На количество образующихся ПХДД и ПХДФ при сжигании прежде всего влияет конструкция печей и рабочие характеристики процесса, а вовсе не присутствие или отсутствие ПВХ в горящем материале.

Имеются данные, свидетельствующие о присутствии ПХДД и ПХДФ в природе до 1990 г., т.е. задолго до начала производства хлорорганических веществ и хлора. Присутствие ПХДД и ПХДФ в образцах почвы объясняется сжиганием природного топлива (древесина, уголь). По мере накопления экспериментальных данных становится очевидным, что и с особой супертоксичностью ПХДД и ПХДФ не совсем все ясно.

Разработано много способов рециклинга (повторного использования) ПВХ материалов. Часть из них реализована в промышленности. Например, в Германии работают 7 предприятий по переработке отходов ПВХ. Фирма VEKA перерабатывает оконные рамы после 30-40 лет эксплуатации по собственной технологии. Новые строительные профили с внутренними элементами выпускаются из рециклированного ПВХ. На рынок поступают трубы, напольные покрытия и другие изделия из вторичного ПВХ.

Для утилизации ПВХ отходов применяются и химические методы. Окислительное щелочное разрушение жестких ПВХ гранул превращает их в щавелевую кислоту и углекислый газ. Постоянно совершенствуются методы сжигания. Разработан экологически прогрессивный способ сжигания городских отходов с предварительной их газификацией и гомогенным горением. Данный способ разработан в Объединенном институте химической физики РАН и апробирован на зарубежных заводах, при этом доказано, что гомогенный синтез диоксинов из газообразных продуктов сгорания невозможен.

Использование ПВХ изделий приводит к существенной экономии энергии.

Известно, что окна занимают около 20% площади ограждающих конструкций зданий и через них теряется до 50% тепловой энергии. Применение оконных профилей из ПВХ со стеклопакетами позволяет практически исключить эти потери. Соответственно снижается нагрузка на производство тепловой энергии. Нужно меньше сжигать топлива (угль, мазут), а это, как известно, способствует улучшению экологической обстановки.

Использование ПВХ изделий имеет больше преимуществ в области экологии, чем недостатков. Строительные профили из ПВХ (окна, двери и др. изделия) предотвращают вырубку леса. Человеку предоставлена возможность не рубить живое дерево, а использовать материалы-заменители, в том числе и ПВХ, изделия из которых могут эксплуатироваться десятки лет. Это будет способствовать снижению экологической нагрузки от производства других материалов (дерево, металлы и др.), а также обеспечит время необходимое для восстановления экологических систем.

2.3 Пенополистирол в строительстве - это опасно или нет?

В России продолжается строительный "бум". В городах строятся многоэтажные жилые дома, в зеленых зонах - частные коттеджи. На садовых участках менее обеспеченные граждане возводят домики из пеноблоков или других современных и недорогих материалов. И мало кто задумывается о последствиях такого строительства для его собственного здоровья. Достаточно заглянуть на сайт любой строительной фирмы, и вы увидите, что самый недорогой и популярный материал - пенополистирол. Свойства пенополистирола требуют дополнительного изучения.

У пенополистирола существуют три неотъемлемых отрицательных свойства, исходящих из его природы, к которым надо относиться просто осторожно, с пониманием этих процессов. Во-первых, это пожарная опасность. Во-вторых, это недолговечность. И, в-третьих, это экологическая небезопасность. Эти свойства требуют дополнительных исследований. Они не требуют запрещения материала, но они требуют дополнительного - внимательного - к нему отношения и дополнительных исследований. Пенополистирол во время горения выделяет много токсичных веществ, это - раз. Полистирол - это стирол, который заполимеризован, у него молекулы длинные и объемные. На самом деле, 100-процентной полимеризации никогда не бывает. А раз не бывает 100-процентной полимеризации, значит, стирол в этом объеме остается.

А стирол - это вещество, которое, вообще говоря, токсично. Он - такой же, как бензол, как этилбензол, он - из той категории веществ, с которыми лучше не иметь дела. Причем не будем говорить об острой мгновенной токсичности. Мы будем говорить о токсичности хронической, той, которая действует на людей - не на крыс, а именно на людей, - в течение десятилетий, малыми дозами, ниже критических, ниже ПДК. Опыты такие поставлены.

Люди живут в обстановке, когда в жилой атмосфере есть стирол, (пусть концентрации и ниже ПДК); проходит год, два, три - и дальше находится работа врачам. Стирол оказывает сильное воздействие на печень, от этих микродоз стирола достается сердцу, у женщин - особые проблемы... В общем, токсический гепатит - так или иначе, мы кружимся вокруг этого диагноза. Кроме стирола, выделяются и другие вещества, включая фенол, формальдегид, этилбензол и так далее. Это - работа для санитарных врачей. Санитарные врачи, естественно, живут одним днем. Когда им приносят на проверку, скажем, пенополистирол той или иной новой марки, что они делают? - Они на мышах и на крысах изучают смывы водой, смывы спиртом... Но это же все - кратковременные вещи, опыт на 5-10 лет никто же не ставит. А в данном случае люди говорят именно об этом - об опыте на 5-10 лет. И такие опыты в мире известны - когда люди много лет работали в такой атмосфере. Пенополистирол - не самый хороший материал. Просто люди должны это знать - они имеют право на это знание. Вторая сторона дела - сам полистирол, то есть уже не в пенном виде, а просто как полимер, например - в виде чашек или тарелок. Есть профессии, когда люди этим часто пользуются. На работе их кормят из такой посуды -выделяется стирол.

Полистирольные плитки - ими облицовывают помещения. И там при определенных температурах (30, 40, 50 градусов в ванной или, скажем, в кухне, у плиты это нормально) выделяется стирол. Причем есть факты, есть случаи, описанные в журнальных статьях, когда выделение бывает достаточно высокое - много выше ПДК, причем - не только стирола. "Свойства пенополистирола меняются от воздействия неконтролируемых, случайных факторов, и выбор данного материала в качестве утеплителя экономически не выгоден (при эксплуатации здания более 10 лет) и потенциально опасен" [7, 9] .

2.4 Разрушающиеся пластмассы

Большинство пластмасс не разлагаются в окружающей среде, так как живые организмы – деструкторы (грибы и бактерии) не имеют ферментов, необходимых для их разрушения. Известны два важные вида разрушающихся пластмасс:

1.Биополимеры. Это высокомолекулярные соединения, которые производятся живыми организмами и которые деструкторы способы разлагать.

2.Синтетические пластики, специально разработанные так, что они разрушаться в природных условиях. Таких пластики бывают, трех видов:

·   Фоторазрушающиеся пластики - полимерные материалы, разрушающиеся на свету

·   Синтетические биоразрушаемые пластики, подверженные действию бактерий

·   Растворимые пластики, которые растворяются в воде.

Биополимеры

Полигидроксибутаноаты – это природные полиэфиры, вырабатываемые некоторыми бактериями и используемые ими как источник энергии. Микроорганизмы, имеющиеся в почве, во внутренних водоемах, в океане способны разрушить эти полимеры. Полное разрушение полигидроксибутаноатов в окружающей среде обычно происходит в течение 9 месяцев. За все, однако, нужно платить: произвести эти полимеры почти в 15 раз дороже, чем полиэтилен.

Фоторазрушение

Карбонильные группы C=O поглощают излучение в диапазоне длин волн 170-360 нм. Это соответствует ближней ультрафиолетовой области солнечного спектра. Эти группы можно внедрить в полимер в качестве энергетических ловушек. Поглощение энергии приведет к разрыву соседних с карбонильной группой связей, и полимер может распасться на фрагменты, которые будут подвержены биоразрушению.

Синтетические биоразрушаемые пластики

Некоторые пластиковые мешки изготовлены из полиэтилена, в который внедрены гранулы крахмала. Когда мешок выбрасывают, имеющиеся в почве микроорганизмы поедают крахмал. В результате мешок разваливается на очень малые куски остатков полиэтилена, биодеградация которых происходит более быстро.

Растворимые пластики

Если с загрязненным больничным бельем обращаться ненадлежащим образом, есть риск распространения инфекции. Опасности можно избежать, если использованное белье поместить в пакет из растворимого пластика. Грязное белье надежно хранится, пока пакет не отправят в стиральную машину: там пакет растворяется в воде и не мешает стирке.

Растворимые пластиковые пакеты изготавливают из поливинилового спирта. Это новый полимер, получаемый гидролизом или алколизом из другого полимера, поливинилацетата [13, 14].

2.5 Разложение или повторное использование отходов?

Для изготовления всякой вещи, включая предметы из пластмассы, требуется энергия. Часть энергии идет на производство собственно материала, в данном случае полимера, остальное требуется для переработки, то есть изготовления конечного изделия.

Основная часть энергия тратится на производство пластмассы, так что исходя, из целей энергосбережения можно заключить, что повторное использование – это дело полезное.

Ситуации здесь, однако, сложнее, чем в случае стекла. Находящееся в употреблении стекло в основном одного типа и всего-то трех цветов.

Сколько же стоит сбор и сортировка пластмассовых отходов? И для чего можно использовать полученный из вторичного сырья пластик? Есть много областей применения, для которых бывший в употреблении пластик непригоден. Например, большинству людей не нравится, если пищевые продукты упаковывают в такой пластик.

Тем не менее, в Великобритании 60 компаний заняты рециклом полимерного вторичного сырья, они возвращают около 150 000 тонн полимерных материалов в год. Две трети повторно используемых пластиков получают из промышленных отходов, и большая часть – это «чистые» материалы: отходы непластифицированного при изготовлении оконных рам, отслужившие свое ящики и корпуса автомобильных аккумуляторов из полипропилена.

Пока экономически невыгодно заниматься рециклом смесей различных пластиков из бытовых отходов. Когда это станет возможным, было бы неплохо вернуться к нынешним пластиковым отходам, произвести их сортировку и повторно использовать. Этого иногда нельзя будет сделать, если мы будем выбрасывать отслужившие изделия из пластиков на свалки вместе с другими отходами. Так что, может быть. Нам следует сейчас собирать пластиковые отходы отдельно от других, с тем, чтобы будущие поколения имели ресурсы, которые можно было бы использовать. [13, 14].

В этой главе мы рассмотрели некоторые (на самом деле их гораздо больше) экологические вопросы, связанные с удалением и повторным использованием отходов из пластмасс. И в следующей главе мы будем рассматривать, способы проведения уроков в школе по этой теме.


ГЛАВА 3. ИЗУЧЕНИЕ СИНТЕТИЧЕСКИХ ВЫСОКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ НА УРОКЕ ПО ХИМИИ В СРЕДНЕЙ ШКОЛЕ

  3.1 План урока

 

Урок 1. Тема урок. Понятие о высокомолекулярных соединениях

Цель урока: Систематизировать и углубить знания учащихся о высокомолекулярных веществах.

Задачи: 1. ввести понятия – мономер, полимер, степень полимеризации, структурное звено, средняя молекулярная масса. 2. Ознакомить с разными структурами полимеров (линейной, разветвлённой и др.). 3. научить доказывать влияние строения полимеров на их свойства. Ученики должны узнать сущность реакций полимеризации и поликонденсации, уметь записывать уравнения химических реакций.

Материалы и оборудование: модели молекул этилена, пропилена, хлорвинила, стирола; выставка изделий из пластмасс и полимеров.

Тип урока: комбинированный, с элементами беседы и лекции.

 

Ход урока

1.Организационый момент, т.е. приветствие, проверка присутствующих (1-2 мин.).

I. Опрос домашнего задания и подготовка к восприятию нового материала (10-12 мин.).

Фронтальная беседа.

Вопросы:

Какие углеводороды вы знаете?

Ответ: В органической химии различают предельные углеводороды (алканы), непредельные (алкены, алкадиены и алкины) и ароматические углеводороды.

2.Какие углеводороды называются непредельными и как их подразделяют? Напишите общие формулы непредельных углеводородов?

Ответ. Непредельными называются углеводороды, молекулы которых содержат кратные (двойные или тройные) связи. Общая формула углеводородов, содержащих одну двойную связь (алкенов) – CnH2n. Общая формула углеводородов с двумя двойными связями (диенов) - CnH2n-2. Такую же формулу имеют УВ с одной тройной связью (алкины).

3.         Какие из углеводородов способны вступать в реакцию полимеризации?

Ответ: В реакции полимеризации способны вступать алкены, диеновые углеводороды, алкины. Из ароматических углеводородов стирол участвует в реакциях полимеризации.

4.         Почему именно из этих углеводородов можно получить полимеры?

Ответ: Непредельные углеводороды вступают в реакцию полимеризации из-за наличия у них в молекулах кратных связей, которые разрываются вследствие соединения молекул друг с другом.

Участие стирола  в реакции полимеризации объясняется тем, что в боковой цепи его молекул содержится непредельный радикал винил.

II. Изучение нового материала (20-25 мин.).

Полимеры – высокомолекулярные соединения, вещества с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), в которых атомы, соединенные химическими связями, образуют линейные или разветвленные цепи, а также пространственные трехмерные структуры. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества. Большое число полимеров получают синтетическим путем на основе простейших соединений элементов природного происхождения путем реакций полимеризации, поликонденсации, и химических превращений.

1.Значение высокомолекулярных соединений.

2.Основные понятия (например, реакций полимеризации этилена):

мономер, полимер, структурное звено, степень полимеризации.

3. Геометрическая структура или форма макромолекулы полимеры:

линейная, разветвленная, пространственная.

4. Характеристика молекулярной массы полимера.

5. Свойства полимеров:

высокая механическая прочность, не имеют определённой температуры плавления и кипения, отсутствие летучести, вязкость растворов, нерастворимость в воде.

6. Способы получения (синтеза) полимеров:

а) Реакция полимеризации; б) Реакция поликонденсации

1. Полимеризация - это процесс образования высокомолекулярных соединений по цепному механизму без выделения низкомолекулярного соединения.

2. Полиприсоединения - это процесс образования высокомолекулярных соединений по ступенчатому механизму без выделения низкомолекулярных продуктов.

3.         поликонденсация – это получение высокомолекулярного соединения по ступенчатому механизму с выделением низкомолекулярного продукта.

7. Экологические проблемы, связанные с полимерами.

Синтетические полимеры имеют определенные преимущества по сравнению с другими материалами (например, древесиной или сталью), поэтому они находят широкое практическое применение. Однако ликвидация отходов, содержащих синтетические полимеры, представляет чрезвычайно серьезную экологическую проблему. Например, при сжигании поливинилхлорида на мусоросжигательных заводах могут образовываться диоксины и выделяться тяжелые металлы. Кроме того, синтетические полимеры имеют низкую термостойкость, при нагревании они разлагаются с образованием токсичных продуктов. Некоторые синтетические полимеры выделяют вредные для здоровья пары (особенно фенолформальдегидные смолы, используемые в качестве связывающих веществ в древесно-стружечных плитах и покрытиях).

 

Знаете ли вы что…


Информация о работе «Формирование основных понятий о высокомолекулярных веществах в курсе средней школы с экологической составляющей»
Раздел: Педагогика
Количество знаков с пробелами: 79614
Количество таблиц: 1
Количество изображений: 8

Похожие работы

Скачать
157154
13
8

... инженерию. Необходимо отметить, что если базовый стандарт по химии не предусматривает изучение вопросов биотехнологии, то таковой по биологии содержит наиболее общие её аспекты: достижения генной инженерии и перспективы биотехнологии. 2.2 Межпредметные связи по изучению аспектов биотехнологии в средней школе По программе Р.Г. Ивановой и Л.А. Цветкова в 10 классе предусмотрено изучение темы ...

Скачать
91672
3
0

... (9, 10 класс). Таким образом, можно сделать вывод о том, что разработка элективного курса по данной теме является актуальной. ГЛАВА II. РАЗРАБОТКА ШКОЛЬНОГО ЭЛЕКТИВНОГО КУРСА «ПОЛИМЕРЫ ВОКРУГ НАС»   II. 1. Программа курса профильной ориентации для учащихся 9 класса в рамках предпрофильной подготовки по курсу «Полимеры вокруг нас»   Пояснительная записка Программа элективного курса «Полимеры ...

Скачать
506268
0
1

... и, конечно же, за многими другими, которые будут получены, — будущее. В этом направлении и работают многие НИИ и исследователи. Аспекты поиска новых лекарств, изыскание новых лекарственных веществ состоит из трех основных этапов: химический синтез, установление фармакологической активности и безвредности (токсичности). Такая стратегия поиска с большой затратой времени, реактивов, животных, труда ...

Скачать
59978
4
1

... и до конца 80-х гг. было издано свыше 20 докладов, посвященных анализу состояния образования в отдельных регионах и странах. Для того, чтобы определить основные направления движения высшей профессиональной школы, необходим проблемно-ориентированный анализ ее состоянии и перспектив развития. В условиях быстро меняющегося содержания знаний, постоянного его приращения все возрастающими темпами, ...

0 комментариев


Наверх