2. МЕХАНИЗМЫ ВЫЖИВАНИЯ БАКТЕРИЙ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ
Из широкого набора воздействий, которые окружающая среда может оказывать на организмы, к числу наиболее экстремальных, несомненно, относится повышенная температура. С повышением температуры скорость роста микроорганизмов вначале увеличивается, достигая максимальной, но дальнейшее увеличение температуры ведет к необратимой инактивации клеточных компонентов, прежде всего денатурации белков и нуклеиновых кислот, и гибели клетки. Для большинства организмов характерен весьма незначительный интервал между оптимальной и максимальной температурами.
Для ученых представляет большой интерес изучение микроорганизмов, которые не только выживают, но и размножаются, часто облигатно, при температурах, препятствующих в норме существованию каких бы то ни было форм жизни, вследствие разрушения необходимых для них макромолекул.
Термофилия включает в себя множество молекулярных механизмов и не может быть объяснена каким-либо одним свойством организма. Многочисленные сравнительные физико-химические исследования белков термофильных показали различные механизмы выживания бактерий при высоких температурах (Логинова Л.Г., 1977).
2.1 Молекулярные механизмы термофилии
Возможность существования термофилов при высокой температуре обусловлена следующими особенностями:
1) составом липидных компонентов клеточных мембран, а именно высоким содержанием длинноцепочечных С17—С19 насыщенных жирных кислот с разветвленными цепями;
2) высокой термостабильностью белков и ферментов (последние имеют низкую молекулярную массу и содержат значительное количество ионов кальция);
3) термостабильностью клеточных ультраструктур.
Метаболизм термофильных микроорганизмов соответствует их существованию при высоких температурах. В частности, ферменты отличаются не только высокой термостабильностью, но имеют оптимум активности при существенно более высокой температуре, чем их мезофильные аналоги. Несмотря на то что в целом первичная структура этих ферментов различается лишь немного, точечные аминокислотные замены значительно увеличивают термостабильность вторичной структуры. Термостабильность ДНК обеспечивается суперспирализацией, которая достигается действием специфического фермента — обратной гиразы. Высокой термостабильностью отличаются также рибосомальный аппарат и цитоплазматические мембраны, в которых преобладают насыщенные жирные кислоты. В состав мембран гипертермофильных архей вместо жирных кислот входят специфические липиды — углеводородсодержащие бифитаниловые эфиры (Бухарин О.В., 2005).
2.1.1 Особенность липидов и мембран
Липиды термофильных организмов имеют более высокие температуры плавления, чем липиды нетермофильных. Верхний температурный предел роста бактерий определяется температурой плавления клеточных липидов. Возрастание процентного содержания насыщенных и разветвленных жирных кислот при повышении температуры выращивания микроорганизмов приводит к образованию более устойчивой клеточной мембраны. К главным липидным компонентам экстремальных термофилов относятся жирные кислоты, содержащие 17, 18 и 19 атомов углерода.
Липиды играют важную роль в молекулярном механизме термофилии, а их соединения с углеводами (гликолипиды) способствуют термостабильности мембран. Липиды мембран действуют как изоляторы, препятствующие переносу тепла из внешней среды и предотвращающие таким образом тепловую денатурацию растворимых ферментов.
Липидный состав термофилов зависит от температуры среды, и сохранение физического состояния липидов в мембране при изменении температуры обусловлено изменениями ее липидного состава.
Большой интерес представляет термофильный ацидофил Thermoplasma acidophilum. Термофилия этого организма, растущего при температуре 59°С, связана с наличием длинных изопреновых цепей липидов. Большая часть содержащихся в мембране нейтральных липидов этерифицирована жирными кислотами, а основная масса глико- и фосфолипидов состоит из длинных цепей с простыми эфирными связями. Аминокислотный состав мембранного белка характеризуется относительно низким уровнем заряженных аминокислот и довольно высоким содержанием остатков цистеина. Высокое содержание кислых аминокислот, является обязательным условием для его роста в термофильных условиях.
Большое количество данных о свойствах мембран и их регуляции собрано при изучении используемой в качестве модельной системы Escherichia coli. Обнаружено, что мембраны клеток Е. coli во многих отношениях напоминают мембраны термофильных организмов. Об этом говорят следующие особенности мембран E.coli: 1) соотношение насыщенных и ненасыщенных жирных кислот, накапливающихся в результате подавления биосинтеза липидов, сильно зависит от температуры; например, фракция свободных жирных кислот из клеток, выращенных при 15°С, содержит в 10 раз больше ненасыщенных жирных кислот, чем фракция, полученная из клеток, выращенных при 43°С; 2) при повышении температуры липиды мембраны Е. coli обнаруживают фазовый переход из упорядоченного в неупорядоченное состояние; синтез мембран, содержащих менее одной трети нормального количества таких липидов, приводит к гибели клетки.
Термофилы способны контролировать физические свойства цитоплазматической мембраны, изменяя ее состав в ответ на изменение температуры. Однако этот общий механизм, действует также и у мезофила Е. coli. Таким образом, температурные границы оптимального функционирования мембраны, от которых, несомненно, зависит величина кардинальных температур роста организма, определяются характером химических модификаций веществ, входящих в состав мембраны. Как и в случае термостабильных по своей природе белков, найденных у облигатных и кальдоактивных бактерий, тонкий механизм (или механизмы), участвующий в стабилизации мембраны, остается пока неизвестным. Молекулярная основа регуляции фазового перехода липидов относится к одной из наиболее важных, но еще слабоизученных сторон функционирования мембраны.
... к: загрязнению атмосферы, засолению почвы, различным биотическим и климатическим факторам и т.д. В своей работе я рассмотрю несколько важных, на мой взгляд, видов адаптаций растений. Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации [2, c.23]. У ...
... . В статье 18 говорится, что качество воды источников должно отвечать санитарным правилам и в целях предупреждения загрязнения источников устанавливаются зоны санитарной охраны. Действительно, вода является одним из важнейших элементов окружающей среды и имеет физиологическое, санитарно-гигиеническое, хозяйственное и эпидемиологическое значение. Употребление недоброкачественной воды может быть ...
... Конституции РФ общепризнанные принципы и нормы международного права и международные договоры Российской Федерации являются составной частью ее правовой системы. Вопрос №4 Понятие, особенности, классификация и система источников права окружающей среды Как отмечалось, наличие развитой системы источников права окружающей среды — существенное условие для выделения совокупности эколого-правовых ...
... выше вследствие ухудшения бесплатного лечения, баснословного роста цен на лекарства, недоступности для пенсионеров лечения в домах отдыха, санаториях и т.д. Приложение 2 Влияние различных факторов среды на здоровье человека [2, 498-499] Факторы Учтенные показатели Степень влияния, % Жилая среда Жилая площадь Расстояние до лесопарка Химическое загрязнение воздуха Шум Длительность ...
0 комментариев