5. РЕАКЦИИ МИКРООРГАНИЗМОВ НА ТЯЖЕЛЫЕ МЕТАЛЛЫ И ТОКСИЧНЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ
Среди микроорганизмов есть формы, устойчивые к действию общих клеточных и метаболических ядовитых веществ (фенол, окись углерода, сероводород и др.), отдельные виды обладают способностью использовать эти соединения в качестве источников питания. Считают, что устойчивость микроорганизмов к токсичным веществам во многих случаях определяется плазмидами.
В выработке устойчивости бактерий к токсичным веществам участвуют трансмиссивные плазмиды, несущие гены множественной устойчивости — R-факторы (от англ. resistance — устойчивость). R - факторы обусловливают устойчивость микроорганизмов к нескольким (девять и более) группам веществ — солям тяжелых металлов, а также антибиотикам, лекарственным веществам, и др. Гены, которые определяют устойчивость бактерий, могут находиться в транспозонах, способных перемещаться в разные участки хромосомы и на плазмиды. Распространению множественной устойчивости бактерий способствует комбинация трансмиссивной плазмиды с транспозоном.
Влияние на микроорганизмы токсичных веществ в небольших концентрациях, не вызывающих их гибели, рассматривают как один из вариантов стрессовых (от англ. stress — напряжение) воздействий. В таких условиях включаются специальные механизмы клеточного метаболизма, которые обеспечивают выживание бактерий (Бухарин О.В., 2005).
Микроорганизмы по-разному реагируют на тяжелые металлы в зависимости от вида микроорганизма и концентрации тяжелых металлов в среде. Это справедливо также для мышьяка и сурьмы. Всем микробам в качестве компонентов питания необходимы те или иные тяжелые металлы, такие, как Со, Си, Fe, Мп и Zn. Некоторые микроорганизмы нуждаются также в Мо, V и Ni. Все эти металлы участвуют в основном в ферментативном катализе и должны присутствовать в питательной среде лишь в очень низких концентрациях, обычно порядка нескольких микрограммов на один литр. Ряд микроорганизмов способен осуществлять активный транспорт некоторых из этих элементов внутрь клетки. Существуют бактерии и грибы, которые вырабатывают специальные хелатобразующие вещества, облегчающие проникновение железа в клетку при нейтральных значениях рН. Это проникновение происходит в результате активного транспорта хелатного железа и распада хелата после его переноса через плазматическую мембрану. Даже токсичный ион арсената может проникнуть в клетку путем активного транспорта, как в случае Saccharomyces cerevisiae.
Любой из металлов, а также мышьяк или сурьма в достаточно высоких концентрациях становятся токсичными для микроорганизмов. Проявления этой токсичности могут быть различными, например изменение морфологии клеток или клеточного метаболизма, бактериостаз или гибель клеток. В некоторых случаях возникают более толерантные к тяжелому металлу, мышьяку или сурьме резистентные штаммы, т. е. такие, для воздействия на которые необходима более высокая концентрация токсичного вещества, чем для воздействия на родительские штаммы. Обычно эта резистентность обусловлена генетическими модификациями, часто связанными с плазмидами, а иногда — с половым фактором или с хромосомами. Причиной повышенной резистентности может быть уменьшение проницаемости клетки для токсичного вещества или его биохимическое обезвреживание. Показано, что исключительная резистентность Scytalidium к меди (выдерживает концентрацию CuS04 до 1 М) обусловлена кислой реакцией среды (рН от 2,0 до 0,3) и неспособностью ионов меди проникать в клетки при таких значениях рН, поскольку при реакции среды, близкой к нейтральной, гриб становится чувствительным к 4 • 10-5 М CuSO4. Одни микробы обезвреживают тяжелые металлы, мышьяк или сурьму, вырабатывая вещества, реагирующие с указанными элементами внутри клетки (например, при метилировании ртути или мышьяка) или вне ее, т. е. делают их недоступными для ассимиляции микробом (например, осаждение арсената или арсенита ионами железа в процессе окисления арсенопирита при участии Thiobacillus ferrooxidans). Другие микроорганизмы нейтрализуют токсичные соединения, превращая их ферментативным путем в менее вредные (примером может служить восстановление HgCl2 до HgO. Физиологическое состояние организма также определяет его чувствительность к интоксикации тяжелыми металлами, мышьяком или сурьмой.
Механизм токсического действия тяжелых металлов, мышьяка и сурьмы зависит от природы соединения и рассматриваемого организма. Одни элементы, такие, как Си, связываются в основном с клеточной поверхностью, где и локализуются вызываемые ими повреждения. Другие элементы, например Hg, проникают внутрь клетки, где связываются с определенными функциональными группами, в частности с SH-группами, инактивируя таким образом жизненно необходимые молекулы, такие, как молекулы ферментов, или откладываются в металлической форме. Существуют также дополнительные механизмы токсического действия тяжелых металлов, мышьяка и сурьмы, обусловленные тем, что последние могут: 1) играть роль антиметаболитов; 2) образовывать стабильные осадки или хелаты с важными метаболитами или катализировать распад таких метаболитов, в результате чего они становятся недоступными для клетки; 3) замещать структурно или электрохимически важные элементы, что приводит к нарушению ферментативной или клеточной функции.
Одни микробы окисляют восстановленные формы тяжелых металлов и соединений мышьяка или сурьмы, в то время как другие восстанавливают окисленные формы этих элементов в больших масштабах. При окислении восстановленных соединений металлов по крайней мере некоторые микроорганизмы могут извлекать полезную энергию и восстанавливающую способность. При восстановлении окисленных соединений металлов ряд микробов осуществляет процесс, который является, по-видимому, своеобразной формой дыхания, характеризующейся тем, что окисленные соединения металлов, мышьяка или сурьмы служат частично или исключительно в качестве конечных акцепторов электронов. Такие реакции окисления и восстановления могут иметь фундаментальное значение в перераспределении этих элементов в среде.
В табл. 2 перечислены минералы, многие из которых ассоциированы с рудами, подвергающиеся воздействию микроорганизмов.
Таблица № 2. Некоторые природные минералы, содержащие металлы и подвергающиеся воздействию микроорганизмов |
Микробы способны концентрировать тяжелые металлы внутри клеток или на их поверхности. Известны следующие соотношения концентраций различных металлов, содержащихся в морской воде и планктоне: кадмий—1:910, кобальт—1:4600, медь—1:7000, железо — 1 : 87 000, свинец — 1:41 000, марганец — 1 : 9400, титан— 1:20 000 и цинк—1:65 000. В общем конечная концентрация металла внутри клетки может быть на несколько порядков выше его концентрации в окружающей среде. В одних случаях накопление соответствующих соединений оказывается летальным, а в других — нет. На поглощение ионов металлов могут оказывать влияние физиологическое состояние клеток и условия окружающей среды.
Более устойчивы к действию химических веществ из неспорообразующих шаровидные формы. Палочковидные и извитые формы микробов при прочих равных условиях быстрее погибают.
Споры почти не содержат свободной воды, имеют плотную двойную оболочку, поэтому отличаются более высокой устойчивостью к действию химических веществ. Таким образом, действие химических веществ зависит от состава, концентрации, экспозиции, температуры и других факторов (Асонов Н.Р., 1997).
Кислые сточные воды шахт представляют собой пример условий окружающей среды с исключительно высокими концентрациями тяжелых металлов, а также, возможно, мышьяка и сурьмы, токсичными для многих микроорганизмов. Тем не менее, в этих сточных водах была обнаружена смешанная микрофлора, состоящая из водорослей, грибов, простейших и бактерий, которая, по-видимому, специфически адаптировалась к таким условиям.
Изложенное выше показывает, что у некоторых микроорганизмов выработались специфические механизмы взаимодействия с тяжелыми металлами, мышьяком и сурьмой, присутствующими в окружающей среде, иногда в концентрациях, которые токсичны для многих других микробов и высших форм жизни. Микроорганизмы могут использовать эти вещества в качестве источников энергии или акцепторов электронов в процессе дыхания. В ряде случаев у микробов выработались способы удаления этих веществ из среды путем их осаждения, адсорбции или улетучивания. Эти реакции вносят вклад в детоксикацию среды, которая становится более пригодной ие только для микробов, катализирующих такие реакции, но и для других организмов, неспособных развиваться без подобной «помощи» (Кашнер Д., 1981).
... к: загрязнению атмосферы, засолению почвы, различным биотическим и климатическим факторам и т.д. В своей работе я рассмотрю несколько важных, на мой взгляд, видов адаптаций растений. Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации [2, c.23]. У ...
... . В статье 18 говорится, что качество воды источников должно отвечать санитарным правилам и в целях предупреждения загрязнения источников устанавливаются зоны санитарной охраны. Действительно, вода является одним из важнейших элементов окружающей среды и имеет физиологическое, санитарно-гигиеническое, хозяйственное и эпидемиологическое значение. Употребление недоброкачественной воды может быть ...
... Конституции РФ общепризнанные принципы и нормы международного права и международные договоры Российской Федерации являются составной частью ее правовой системы. Вопрос №4 Понятие, особенности, классификация и система источников права окружающей среды Как отмечалось, наличие развитой системы источников права окружающей среды — существенное условие для выделения совокупности эколого-правовых ...
... выше вследствие ухудшения бесплатного лечения, баснословного роста цен на лекарства, недоступности для пенсионеров лечения в домах отдыха, санаториях и т.д. Приложение 2 Влияние различных факторов среды на здоровье человека [2, 498-499] Факторы Учтенные показатели Степень влияния, % Жилая среда Жилая площадь Расстояние до лесопарка Химическое загрязнение воздуха Шум Длительность ...
0 комментариев