1. Есть немножко чужой ДНК.
2. Есть какой-то новый для этого продукта компонент -белок, витамин и т. д.
КОМУ ОНА ЧУЖАЯ?
Люди ели растения и животных всегда (когда имели такую возможность), а это означает, что они всегда ели растительную и животную ДНК. И никто не жаловался. Наоборот, жаловались, когда не ели.
Генетически модифицированная ДНК это такая же ДНК, как и не модифицированная. Химическая структура у нее та же, то есть она состоит из тех же нуклетидов, но расположенных в другом порядке. Поэтому ее потребление не представляет какого-то особого риска. Внутри нас генетически модифицированные продукты перевариваются точно так же, как обычные.
Мы ежедневно съедаем большое количество различных генов, поглощая сырые овощи, необработанные (или слабо обработанные) мясные продукты (рыбу, яйца), микроорганизмы (они в кисломолочных продуктах, необработанных продуктах и т. д.). Человеческий организм привык нормально их перерабатывать.
Когда мы едим какой-либо продукт, наша система пищеварения разрушает ткани, белки и ДНК этого продукта. Как я уже упоминал, молекулярная структура ДНК в генетически модифицированных продуктах такая же, как и в не модифицированных, поэтому она разрушается точно также. Надо сказать, что иногда ДНК продуктов, которые мы едим, разрушается не до конца, однако, встроиться в нашу ДНК такие частицы не могут. Попав в клетки, такие частицы ДНК будут разрушены, так как в любой клетке существуют защитные механизмы, которые борются с чужим генетическим материалом.
Однако, у людей осторожных возникло опасение, что некоторые гены трансгенных организмов могут перейти к микроорганизмам, которые живут в нашем желудочно-кишечном тракте. Эта тревога вызвана тем, что у части трансгенных организмов кроме основного встроенного гена есть еще и дополнительный "маркерный" ген (о нем было сказано выше). Как правило, это ген устойчивости к антибиотику Канамицину. Если такой ген перейдет к микроорганизмам желудочно-кишечного тракта, то они станут устойчивыми к этому антибиотику. Тогда могут возникнуть трудности с лечением некоторых инфекционных заболеваний. Оговорюсь сразу, что случаев передачи генов из растений в микроорганизмы в кишечнике официально не зарегистрировано. И это не удивительно. Для того, чтобы произошла передача генов нужно очень много условий, а именно:
1. Надо, чтобы ДНК, содержащая целый ген, была выделена из растения и не была бы разрушена желудочным соком.
2. Эта ДНК (целиком) должна не только проникнуть через клеточную стенку и клеточную мембрану микроорганизма, а еще и выжить при работе механизма уничтожения чужеродной ДНК микроорганизма.
3. Надо, чтобы ДНК растения встроилась в ДНК микроорганизма и именно на том участке, где будет возможна нормальная работа этого гена.
4. А также чтобы ген, если трансформировался, не только был способен работать, но и работал в микроорганизме. Потому, что гены, модифицированные для работы в растениях, не приспособлены для работы в микроорганизмах.
В результате мы будем иметь вероятность приобретения микроорганизмами устойчивости к этому антибиотику равной нулю и нескольким десяткам нулей после запятой. Хочу сказать, что естественную устойчивость к антибиотикам отмечают ежегодно в десятках и даже сотнях случаев для большого количества препаратов. На этом фоне устойчивость, которая может быть привнесена за счет трансгенных растений, событие практически невероятное. Тем не менее, никому бы не захотелось оказаться той самой единичкой за рядом нулей после запятой (хотя это на много порядков менее вероятно, чем выиграть в государственную лотерею). Поэтому сейчас ведется активная работа по поиску новых маркерных генов без устойчивости к антибиотикам, а по решению Европейского Союза к 2008 году трансгенные организмы с такими маркерными генами, на всякий случай, будут полностью выведены из производства.
ЧТО НОВЕНЬКОГО?
Если с ДНК все ясно, то с новыми компонентам в привычных продуктах сложнее. Для того чтобы оценить, вреден ли новый продукт, придумали концепцию "существенной эквивалентности". То есть, сначала определяют, насколько он похож на старый (эквивалентен старому), который мы считаем безвредным. По этой концепции сначала детально, по многим параметрам, сравнивают новый продукт с его "традиционным двойником". При этом изучают и сравнивают важные питательные вещества и возможные вредные вещества (токсины, аллергены и т.д.), генетическое прошлое, как основного организма, так и источника переданных генов и многое другое. Кроме того, принимается во внимание, как этот продукт обрабатывается; насколько важен он будет в рационе; какие другие продукты он может заменить; возможные объемы потребления.
В некоторых случаях технологическая обработка устраняет разницу между продуктом, полученным при помощи трансгенных организмов, и его традиционным аналогом. Например, трансгенная кукуруза, устойчивая к насекомым, содержит соответствующий ген и белок, но полученное из нее растительное масло высокой очистки не будет содержать ни ДНК, ни белок. По всем остальным параметрам такое масло будет совершенно одинаковым. Такой продукт будет считаться существенно эквивалентным. Основной проблемой при определении существенной эквивалентности является то, что в мире существует огромное количество продуктов питания и очень разные рационы питания. Большинство продуктов, особенно растительного происхождения, состоят из огромного количества ингредиентов. Более того, они могут значительно отличаться один от другого в зависимости от сорта, погодных условий конкретного года выращивания, условий уборки урожая, хранения и многого другого (все знают, что тонкие ценители вина находят разницу во вкусе в зависимости от года, места произрастания, срока хранения, качества бочек и т.д.). Технологическая обработка тоже сильно влияет на химический состав - в некоторых случаях его усложняет (например, кофе), в иных - упрощает (мука); это же относится и к тепловой обработке.
Поэтому при оценке безопасности трансгенных пищевых продуктов учитываются достаточно широкие пределы, по которым их сравнивают с традиционными аналогами (по содержанию основных макро- и микроэлементов, природных токсинов, основных масел и алкалоидов и — менее существенных компонентов пищевых продуктов, в частности, по содержанию вредных белков и т.д.).
По результатам таких исследований новые продукты распределяют на три категории, от которых зависит — как будет проводиться оценка их безопасности:
• Категория 1.
Новый пищевой продукт существенно эквивалентен уже имеющимся пищевым продуктам. Я уже приводил в пример растительное масло высокой очистки. В этом случае после определения категории дальнейшая оценка безопасности не проводится, и такой продукт признается "таким же безопасным, как двойник".
• Категория 2.
Новый пищевой продукт существенно эквивалентен своему традиционному двойнику, кроме четко определенных различий. При этом дальнейшая оценка безопасности сосредотачивается на этих отличиях. Например, "золотой рис" или картофель, устойчивый к колорадскому жуку. Они отличаются от своих аналогов наличием провитамина А (рис) и Вг-белком (картофель). Надо удостовериться, что эти компоненты не приносят вреда человеку.
• Категория 3.
Новый пищевой продукт не может быть признан как существенно эквивалентный или из-за того, что отличия очень велики, или из-за отсутствия соответствующего двойника, с которым его можно сравнить. При такой категории необходимо проведение тщательных исследований на предмет пищевой ценности и безопасности продукта.
На сегодняшний день еще нет трансгенных пищевых продуктов, которые можно отнести к третьей категории.
Как видим, прежде чем попасть на наш стол, все продукты, в составе которых использовались ГМО, проверялись настолько тщательно, как не проверялся ни один продукт за всю историю человечества. Так, что — ешьте на здоровье!
По данным Американского совета по науке и здравоохранению, на сегодняшний день нет научной информации, свидетельствующей о какой-либо опасности, присущей только ГМО. Модифицированные ДНК на протяжении более чем 25 лет с успехом используются в фармацевтике, где до сих пор не зафиксировано ни одного случая вреда, вызванного генетическими модификациями. Уже около десяти лет не менее 300 миллионов человек едят трансгенные продукты, и нет ни одного свидетельства каких-либо нарушений, вызванных их потреблением. Что, в общем-то, закономерно после таких придирчивых испытаний.
Конечно, нельзя полностью исключить ошибки, при сертификации ГМО. Таким примером может быть "ограниченное разрешение", выданное Агентством по охране окружающей среды на выращивание в США трансгенного гибрида кукурузы (51аг1тк). Эту кукурузу было разрешено использовать только в качестве корма для животных из-за ее возможного аллергического действия на людей. При этом агентство гарантировало безопасность, надеясь, что в цивилизованном обществе не будут перемешивать корм для скота с пищей для человека. Однако, в сентябре 2000 года в США в газете "08 Тодай" была опубликована статья о том, что в супермаркетах выявлены упаковки кукурузных хлебцов известной системы ресторанов Тасо Ве11, изготовленные из муки кукурузы 81агНпк. Информация была представлена группой по надзору за биотехнологиями с броским названием "Бдительность по отношению к генетически модифицированным продуктам". Представители этой группы утверждали, что этот продукт может вызывать аллергические реакции и даже аллергический шок. Скандал приобрел национальный масштаб. Все выпуски новостей в стране начинались с обсуждения этого события, газеты отводили ему первые полосы своих изданий, не говоря уже о ведомствах, которые по роду деятельности обязаны защищать интересы потребителей. Через 1-2 дня фирма, которая занималась распространением кукурузных хлебцов, добровольно отозвала миллионы упаковок продукции, а тем, кто купил ее, предлагалось вернуть обратно. Несмотря на масштаб, ни одного случая какого-либо недомогания в связи с потреблением хлебцов не было. Что, собственно, и должно было быть. Потому, что после скандала кукурузу §1агИпк снова подвергли очень глубоким и всесторонним исследованиям и пришли к выводу, что она безопасна, а предыдущее решение об "ограниченном разрешении" и вывод о том, что она может вызывать аллергию, охарактеризован как "недобросовестность некоторых участников рынка".
Громкая история с кукурузными хлебцами показывает огромный интерес у людей самых разных профессий к проблеме ГМО. И тут мы подходим, пожалуй, к наиболее болезненной теме, которая уже приобрела в мире официальное название: общественное восприятие биотехнологии. Возможно, попытавшись разобраться в хитросплетениях общественных процессов, происходящих вокруг биотехнологии, мы найдем ответы на многие вопросы.
... в целях получения прибыли, к монополизации рынка продовольствия и не гарантирует безопасное и полезное для общества применение данной технологии. Краткая история возникновения генетически модифицированных организмов Истоки развития генной инженерии растений лежат в 1977 году, когда и произошло открытие, позволившее использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве ...
... вреднее и для природы, и тем более для человека. Еще один циркулирующий в страшилках миф – о снижении биоразнообразия культурных и даже диких растений из-за внедрения ГМО. Потребности в продовольствии Гомо сапиенс на 90% удовлетворяет за счет двадцати видов растений – какое тут биоразнообразие? Разве что разнообразие сортов, которое давным-давно сохраняется только усилиями селекционеров – в ...
... необходимо появление достаточного количества аккредитованных сертифицирующих органов, соответствующих международным стандартам и должна быть хорошая информационная и маркетинговая поддержка органических продуктов. 1.3 Особенности производства органической пищи Сегодня, когда воздух, вода и земля загрязнены продуктами жизнедеятельность человека, а экологическая обстановка, несмотря на все ...
... применением методов генной инженерии; В работе используется понятие «генетически модифицированные продукты (организмы)», под которыми понимаются продукты питания содержащие результаты генно-инженерной деятельности. 1. Технология ГМО 1.1 Технология получение ГМО Процедура получения ГМО включает в себя несколько основных этапов: • Выделение и идентификация отдельных генов (соответствующих ...
0 комментариев