Симметрия природы и законы сохранения

25063
знака
0
таблиц
0
изображений

СОДЕРЖАНИЕ:

Введение_________________________________________________________ 3

1. Симметрия природы____________________________________________ 4

2. Законы сохранения_____________________________________________ 7

Заключение______________________________________________________12

Литература______________________________________________________13


ВВЕДЕНИЕ:

Важнейшие достижения в физике элементарных частиц свя­заны с симметрией относительно преобразований некоторых параметров, характеризующих внутренние свойства частиц.

Так, в последние годы получили развитие суперсимметри­ческие модели, обладающие симметрией нового типа, связыва­ющие между собой фермионы и бозоны и постулирующие, что у каждой обычной частицы имеется "суперпартнер" с анало­гичными свойствами (за исключением спина — вращения эле­ментарной частицы или античастицы вокруг собственной оси, обусловливающего ее электромагнитное поле). Например, элек­троны, кварки, лептоны имеют суперпартнеров — сэлектроны, скварки. слептоны. Но эта теория еще не подтверждена экспе­риментом.

Существует принцип симметрии Кюри: если условия, одно­значно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действий не нарушит ее. Поэтому, формально, все неравновесные процессы разделяют на скаляр­ные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принци­пом симметрии величины разных размерностей не могут быть связаны друг с другом. Так, скалярная величина не может выз­вать векторную.

Суть методологического значения понятия симметрии наи­более ярко раскрывает высказывание Дж. Ньюмена (1903-1957): "Симметрия устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуа­лью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, ..., строением про­странства, рисунками ваз, квантовой физикой, ... , лепестками цветов, интерференционной картиной рентгеновских лучей, де­лением клеток морских ежей,..., равновесными конфигурация­ми кристаллов, ..., теорией относительности, ...".

В широком понимании, симметричное означает хорошее со­отношение пропорций, а симметрия — тот вид согласованнос­ти отдельных частей, который объединяет их в целое.

Симметрия имеет два значения:

— весьма пропорциональное, сбалансированное, способ со­гласования многих частей, объединяющий их в целое (следствие симметрии — законы сохранения классической физики);

- равновесие (по Аристотелю, это состояние характеризу­ется соотношением крайностей).


1. Симметрия природы

Начало стройной симметрии заложила физика в теории кри­сталлов, что зафиксировано в работах И. Ф. Гесселя (1796 -1872) в 1830 г., Л. В. Гадолина (1828 - 1892) в 1867г., А. Шенфлиса (1853 - 1928) в 1890 г. Первоначально речь шла о геометрических преобразованиях системы: ее переносах и по­воротах.

Фундаментальность значения дальнейшего развития учения о симметрии в том, что каждому непрерывному преобразова­нию отвечает соответствующий закон сохранения, который в последующем был распространен с механики и на квантовую физику.

Так, основной принцип современных калибровочных те­орий фундаментальных взаимодействий Природы состоит в том, что переносчиками взаимодействий выступают опреде­ленные сохраняющиеся величины, обладающие симметрией, оп­ределяющие динамику системы и тем самым позволяющие надеяться на осуществление создания теории "Великого объе­динения взаимодействий", включая теории гравитации.

Основным типам симметрии (С, Р, Т) были даны определе­ния в предыдущем разделе, но симметрию С рассмотрим еще раз. Сильные электромагнитные взаимодействия инвариантны относительно операции зарядового сопряжения: замена всех частиц на соответствующие античастицы. Эта симметрия не является пространственной и рассматривается особо в связи с тем, что характеризует симметрию необычного вида — зарядо­вой четности, в которой нейтральная частица переходит сама в себя при зарядовой сопряженности.

Благодаря существованию СРТ- и СР-симметрий как для сильных, так и электрослабых взаимодействий выполняется симметрия относительно обращения времени, то есть любому движению под действием этих сил соответствует в Природе симметричное движение, при котором система проходит в об­ратном порядке все состояния что и в первоначальном движе­нии, но с изменением на противоположные направлениями скоростей частиц, спинами, магнитными полями. Из Т-симметрии следуют соотношения между прямыми и обратными реак­циями.

Именно симметрия, относительно перестановки одинаковых частиц, обосновывает принцип неразличимости одинаковых ча­стиц (см. разд. 3.9), то есть приводит к полной их тождествен­ности. Связь спина и статистики является следствием релятивистсюй инвариантности теории и тесно связана с СРТ-теоремой. Под внутренними симметриями понимают симметрии между ча­стицами и полями с различными квантовыми числами. При этом различают глобальные и локальные симметрии.

Симметрия называется глобальной, если параметр преобразования не зави­сит от пространственно-временных координат точки, в которой рассматривается поле. Ее примером является инвариантность лагранжиана относительно калиброванных преобразований вхо­дящих в него полей. Эта инвариантность приводит к аддитив­ному закону сохранения заряда, причем не только электрического, но и барионного, лептонного, странности и т. д.

Локальные симметрии существуют, когда параметры преоб­разований для глобальных симметрии можно рассматривать как произвольные функции пространственно-временных координат. Они позволяют построить теорию, в которой сохраняющиеся величины (заряды) выступают в качестве источников особых калибровочных полей, переносящих взаимодействие между ча­стицами, обладающими соответствующими зарядами.

Динамическая симметрия системы возникает, когда рассмат­ривается преобразование, включающее переходы между состо­яниями симметрии с различными энергиями.

Наиболее разработана теория симметрии кристаллов. В ней под симметрией понимается их свойство совмещаться с собой при поворотах, отражениях, параллельных переносах либо при части или комбинации этих операций.  

Симметрия внешней формы (огранки) кристалла определяется симметрией его атом­ного, дискретного трехмерно-периодического строения, кото­рая обусловливает также и симметрию физических свойств кристалла.

Симметрия кристаллов проявляется не только в их структу­ре и свойствах в реальном трехмерном пространстве, но также и при описании энергетического спектра электронов кристалла (зонная теория), при анализе процессов дифракции: рентгено­вских лучей нейтронов и электронов в кристаллах с использо­ванием обратного пространства (обратная решетка) и т. п.

При образовании симметрии пространство не деформирует­ся, а преобразуется как жесткое целое. Такие преобразования называют ортогональными, или изотермическими. Совокуп­ность операций симметрии данного кристалла образует группу симметрии в смысле математической теории групп.

Зная группу симметрии кристаллов, можно указать возмож­ность наличия или отсутствия в ней некоторых физических свойств, чем и занимается кристаллофизика.

В основе определения симметрии лежит понятие равенства при преобразовании. Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в крис­талле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нем магнитных моментов, то обычной, классической симмет­рии уже недостаточно. К подобного рода обобщениям симмет­рии относятся антисимметрия и цветная симметрия. В антисимметрии в дополнение к трем пространственным пере­менным добавляется четвертая ±1, что можно истолковать как изменение знака (антиравна). Это так называемая обобщенная симметрия, используемая в описании, например, магнитных структур.

Другое обобщение симметрии — симметрия подобия — бу­дет определено, когда равенство частей фигуры заменяется их подобием , криволинейная симметрия, статисти­ческая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твердых растворов, жидких кристаллов и т. п.

В физике элементарных частиц симметрия широко исполь­зуется в связи с идеей изотопической инвариантности, предло­женной В. Гейзенбергом для описания взаимодействий протона и нейтрона. Считается, что изотопическая симметрия описы­вает точное свойство инвариантности сильных взаимодействий, хотя получаемые из нее соотношения в действительности все­гда нарушаются на уровне точности порядка нескольких про­центов.

Унитарная симметрия в качестве обобщения изотопичес­кой инвариантности впервые появилась в связи с моделью сим­метрии Сакаты, в которой все адроны считались составленными из трех основных электрических частиц — протона, нейтрона и d-гиперона.

Унитарная симметрия осуществляется с худшей точностью, чем изотопическая, но это не мешает получать ряд интересных соотношения между физическими величинами (например, фор­мула масс Гелл-Манна—Окубо, предсказавшая существование и массу Q-гиперона).

Еще одно приложение группы симметрии к физике адронов — это цветовая симметрия. Согласно определению цвето­вой симметрии каждый кварк имеет три возможных состояния, различающихся по квантовому числу, названному цветом, а пре­образование цветового состояния можно производить незави­симо в разных пространственно-временных точках. С этим связано существование глюонного поля, имеющего восемь цве­товых состояний. Взаимодействие кварков с этим полем явля­ется микроскопической основой сильных взаимодействий. Оно описывается квантовой хромодинамикой — калибровочной квантовой теорией поля типа Янга—Миллса. Кроме того, цве­товая симметрия не нарушается никакими известными в насто­ящее время взаимодействиями, а согласно теореме Нетер следует, что в стандартной модели сильного и электрослабого взаимодействий возникает сохранение барионного и лептонно-го чисел.

 


Информация о работе «Симметрия природы и законы сохранения»
Раздел: Биология
Количество знаков с пробелами: 25063
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
18521
0
2

... момента импульса происходит как в процессах микромира, так и в масштабах вращающихся звезд и галактик – он имеет всеобщий характер. Связь законов сохранения с симметрией пространства и времени Принципы симметрии тесно связаны с законами сохранения физических величин – утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или ...

Скачать
22154
0
0

... , имеющие электрический заряд Q = -1 и Q = 1 соответственно. Также являются стабильными частицами нейтрино и антинейтрино, т.к. это самые легкие носители лептонных зарядов Le, , .   3. СВЯЗЬ ЗАКОНОВ СОХРАНЕНИЯ С СИММЕТРИЕЙ СИСТЕМЫ Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным ...

Скачать
38709
0
0

... по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их свойствами и силовыми взаимодействиями, их движениями и изменениями». Об определении категорий симметрии и асимметрии В настоящее время в науке преобладают определения указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность ...

Скачать
38328
0
0

... а я не вижу оснований считать сохранение заряда более фундаментальным, чем сохранение анергии и импульса". В 1931 г. на физической конференции в Пасадене Паули доложил ученым о своей интерпретации ?-распада: "Законы сохранения выполняются, так как испускание ?-частиц сопровождается проникающей радиацией из нейтральных частиц... Сумма энергий ?-частицы и нейтральной частицы..., испущенных ядром в ...

0 комментариев


Наверх