3. Космомикрофизика
Космомикрофизика — закономерный результат внутреннего развития и физики элементарных частиц, и космологии. В появлении этой науки соединяются две тенденции — переход к теории элементарных частиц, нетривиальные проявления которой раскрываются только в процессах при сверхвысоких энергиях, и возникновение представлений о новых формах материи, необходимых для самосогласованного описания совокупности наблюдаемых явлений во Вселенной. Отчетливое осознание взаимосвязанности проблем выбора правильного фундамента структуры микромира и фундаментального обоснования структуры макромира вывело взаимосвязь представлений микро- и макромира на новый уровень, на котором эти проблемы сливаются в новом качестве. В космомикрофизике структура микромира обретает полнозвучие гармонии небесных сфер.
Связь представлений о микро- и макромире прослеживается на всех этапах их развития. Долгое время суждения о мироздании и о его первоначалах, составляя единое целое, оставались чисто умозрительными. Источником таких суждений были наблюдения и умозаключения на их основе.
Оптические приборы вооружили глаз наблюдателя. Обращение в глубь явлений с помощью микроскопа и расширение взгляда на мир с помощью телескопа произошли на основе одного и того же физического принципа. И, наверное, не случайно у истоков и физического эксперимента, и оптической астрономии стоит один и тот же ученый — Галилео Галилей. С этого момента оптическая астрономия и экспериментальная физика развивались самостоятельно. Отчетливо выявлялась их специфика.
Астрономии было дано лишь пристально вглядываться во внешние проявления астрономических объектов, недра которых закрыты для глаз, наблюдать результат процессов, причины и ход которых недоступны контролю. В физическом эксперименте можно дробить объекты исследования, докапываясь до их сути, можно менять начальные условия и контролировать ход процессов. Поэтому не удивительно, что во взаимоотношении астрономии и физики развитие физики выходило долгое время на передний план, определяя и прогресс астрономии, и степень осмысления астрономических результатов.
Так, изученная физикой структура атомов и спектров их излучения вооружила астрономию методами спектрального анализа. Физические законы взаимодействия вещества и излучения легли в основу понимания закономерностей излучения звезд, а развитие ядерной физики открыло астрономам источники энергии этого излучения. Открытие гелия по линиям излучения Солнца, существование уровня возбуждения в углероде, теоретически предсказанное для объяснения термоядерного горения гелия в звездах, и еще немного другого — можно по пальцам перечесть ответные астрофизические знаки благодарности физике. Астрофизика, казалось, была обречена лишь на освоение прочно подтвержденных в лабораториях физических законов, на роль своеобразного полигона, преломляющего известные эффекты их действия в причудливых сочетаниях неземных условий, подлежащих изучению.
Однако в 20-е годы XX века мысленному взору Фридмана предстала изменчивая суть Вселенной, ее нестационарность, подтвержденная затем в наблюдениях Хаббла. На месте вечной и неизменной Вселенной открылась картина ее расширения за конечное время из сверхплотной фазы в современное состояние.
Тем самым астрономия предоставила физике естественный ускоритель, масштабы и значение которого начинают в полной мере осознаваться физикой микромира только сейчас.
Создание теории нестационарной Вселенной почти на десятилетие опередило революционный шаг, сделанный в 30-е годы в представлениях об элементарных частицах.
Выход из мучительных проблем сохранения энергии и момента в бета-распаде, "азотной" катастрофы и строения ядра физика микромира нашла в отказе от вечных и неизменных частиц, в переходе к представлениям о возможности их рождения и уничтожения в процессах их превращений. Другой урок, полученный в 30-е годы, состоял в том, что число элементарных частиц в Природе оказалось значительно больше, чем этого требует простая и экономная картина строения вещества.
Революции в физике элементарных частиц и в науке о Вселенной в целом, космологии произошли в одно десятилетие, и хотя они охватывали совершенно не пересекающиеся в то время области знания, близость по времени этих двух событий далеко не случайна. Осознание факта нестационарности Вселенной психологически
Подготовило и смену представлений о свойствах микрочастиц: во Вселенной, за конечное время радикально меняющей свое состояние, вечным и неизменным частицам нет места. Отсюда и смена взгляда на основания физики — законы сохранения и взаимодействия элементарных частиц.
Рис. 1. Уничтожение начального электрона 1 и рождение конечного электрона 2 сопровождается рождением или поглощением электромагнитного гамма-кванта.
Так, сохранение электрического заряда оказывалось не простым следствием сохранения неуничтожимых электрически заряженных частиц, а нетривиальным правилом, определяющим строгий локальный баланс уничтожения и рождения заряженных частиц. Менялось и представление о заряде как мере электромагнитного взаимодействия от неотъемлемой характеристики вечной и неизменной частицы к характеристике закона превращения, при котором уничтожение начальной и рождение конечной заряженных частиц сопровождались рождением или уничтожением электромагнитного кванта (рис. 1).
Эта смена представлений содержала богатейший простор для обобщений. Точно так же можно было описать и законы ядерных превращений сильного' и слабого взаимодействий. В таких превращениях уничтожение и рождение частиц сопровождаются рождением и поглощением квантов поля сильного или слабого взаимодействий.
Логический шаг к единообразному описанию всех фундаментальных взаимодействий мог бы быть сделан еще: в 30-е годы, но для его осуществления потребовалось целое пятидесятилетие. Трудность извилистого пути к единообразной картине всех взаимодействий была связана с необходимостью совместить сходство описания с различием в наблюдаемых свойствах этих взаимодействий. Нужно было объяснить, почему слабое взаимодействие происходит только на малых расстояниям, превращение каких именно частиц вызывает процессы сильного взаимодействия и с какими зарядами взаимодействуют кванты его поля.
Ответы на эти и другие вопросы составили современную теорию электромагнитного, слабого и сильного взаимодействий, основанную на симметрии превращении частиц и объясняющую наблюдаемые различия их свойств нарушением этой симметрии. Расширяя симметрию, можно было перейти от единообразия описания разных взаимодействий к их фундаментальному единству. Но такой шаг, поначалу оправданный и близким экспериментальным подтверждением в поисках распада протона, и жесткой, соответствующей экспериментальным данным, связью зарядов слабого и электромагнитного взаимодействий, означал скачок теории к области сверхвысоких энергий, недоступной прямому экспериментальному изучению.
С этим шагом теория теряла непосредственную опору в экспериментальной физике высоких энергий. От привычной прямой экспериментальной проверки своих предсказаний теория должна была перейти к анализу сочетания косвенных проявлений своих фундаментальных построений. Миру физики высоких энергий, обретавшему свое основание в собственных экспериментальных возможностях, открылись для широкого поиска все допустимые косвенные способы исследования гипотетических явлений, прямое экспериментальное изучение которых не представляется возможным. В контексте этой ситуации взаимосвязь физики микромира с космологией приобретает особое значение, становится необходимой опорой развития теории микромира.
Эта взаимосвязь вырастает в необходимую основу развития и современной космологии. Первоначально развитие теории расширяющейся Вселенной проходило относительно самостоятельно. Открытие в 1965 г. теплового фона электромагнитного излучения подтвердило выдвинутую Г. Гамовым так называемую горячую модель расширяющейся Вселенной. Современная температура излучения (~3 К) мала, мала и его плотность энергии в сравнении с плотностью энергии покоя атомов, но, обращая в прошлое известный закон расширения, мы приходим к картине не только плотного, но и горячего состояния вещества с доминирующей плотностью энергии излучения.
Простые оценки показывают, что вещество и излучение находились в ранней Вселенной в термодинамическом равновесии. Соединение закона расширения Вселенной с законами термодинамики позволяло получить логически замкнутую картину космологической эволюции вещества и излучения, в которую элементарные частицы, открываемые физикой высоких энергий, вносили лишь малые количественные поправки. Эта картина превращения радиационно-доминированной горячей плазмы в современную неоднородную структуру вещества, пронизываемую однородным фоновым излучением, качественно подтверждается данными астрономических наблюдений.
Качественно внутренне самосогласованная, эта картина требовала, однако, определенных начальных условий, задаваемых при очень высоких температурах и плотностях на очень ранних стадиях расширения Вселенной, наблюдательная информация о которых отсутствует. И для обоснования этих начальных условий космология должна была обратиться к таким предсказаниям теории элементарных частиц, которые оказывались недоступны лабораторной проверке.
На основе именно этих, не проверенных в лабораториях, представлений физики микромира современной космологии удалось обосновать причины расширения и замечательную однородность наблюдаемой части Вселенной, создать теорию инфляционной Вселенной, объяснить ее барионную асимметрию и природу малых начальных неоднородностей, развитие которых привело к образованию современной крупномасштабной структуры Вселенной, количественно согласовать формирование этой структуры с наблюдаемой изотропией реликтового излучения.
Эти успехи современной космологии были достигнуты ценой привлечения гипотетических форм материи, определивших скрытую массу Вселенной на различных этапах ее эволюции. Тем самым недоступные прямой проверке в астрономических наблюдениях основы современной космологии сливаются с недоступными прямому опыту основами современной теории микромира.
До тех пор пока физика микромира ограничивалась изучением отдельных превращений известных элементарных частиц, в ее теоретических построениях обращение к миру в целом казалось излишним. С другой стороны, знание законов общей эволюции Вселенной также на первый взгляд имеет мало общего с детальными представлениями об отдельных процессах с элементарными частицами.
Но, обращаясь к основаниям и симметрии микромира и начальных условий расширения Вселенной, мы обнаруживаем неразрывную связь физики элементарных частиц и космологии. Фундамент микро- и макромира оказывается единым. Изучение этого единого фундамента во всем многообразии его проявлений и является предметом космомикрофизики.
На пути к единому описанию структуры микро- и макромира космомикрофизика естественным образом сочетает теоретические исследования, вычислительный эксперимент и все возможные способы получения косвенной информации в лабораторных экспериментах и астрономических наблюдениях. Эти составные элементы космомикрофизики имеют свою специфику, к обсуждению которой мы и переходим.
... элементарных частиц — это своего рода постулат, и проверка его справедливости — одна из важнейших задач физики. От электрона до нейтрино Электрон Исторически первой открытой элементарной частицей был электрон — носитель отрицательного элементарного электрического заряда в атомах. Это самая «старая» элементарная частица. В идейном плане он вошел в физику в 1881 г., когда Гельмгольц в ...
... лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи. Исторически первой открытой Э. ч. был электрон — носитель отрицательного элементарного электрического заряда в атомах. В 1897 Дж. Дж. Томсон установил, что т. н. катодные лучи образованы потоком мельчайших частиц, которые были названы электронами. В 1911 Э. Резерфорд, пропуская альфа- ...
... . Такова краткая история изучения космических лучей, в которой берет свое начало история исследования физики элементарных частиц, космофизики и физики Солнца. §2. Экспериментальные методы изучения космических лучей. Крупнейшие экспериментальные установки Согласно всесоюзной классификации научных направлений физика космических лучей является одним из разделов более общего направления — ядерной ...
... и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом. 2. Историческое развитие моделей элементарных частиц 2.1 Три этапа в развитии физики элементарных частиц Этап первый. От электрона до позитрона: 1897-1932гг (Элементарные частицы - "атомы Демокрита" на более глубоком уровне) Когда греческий ...
0 комментариев