1. Анисимов В.Н. Видеотерминалы - угроза здоровью/ Природа, 1995, 2

Тема 1.2. Физика возможного Мир микрообъектов - квантовая физика

Теория относительности Эйнштейна потребовала коренного пересмотра физических представлений о таких фундаментальных понятиях, как пространство и время. Но еще ранее возникли вопросы, касающиеся физической природы излучения и вещества, их сходства и различия, вопросы, относящиеся к внутреннему строению атомов и к происхождению радиоактивности. Попытки ответить на эти вопросы, предпринятые в первые годы нашего века, завершились созданием современной квантовой теории.

В 1897 году английский физик Джозеф Томсон (1856-1940) установил атомистический характер отрицательного электричества. Из своих опытов с катодными лучами он сделал вывод, что они представляют собой поток частиц, которые получили название электронов.

В 1900 году Планк, пытаясь объяснить форму спектра излучения абсолютно черного тела, сделал необычное предположение о том, что обмен энергией между излучением и веществом происходит дискретными порциями, квантами. Большинство физиков восприняло это как “ловкий фокус”, не имеющий серьезных научных оснований. В 1900 году еще придерживались мнения, что все физические процессы протекают непрерывно, и даже сам Планк не шел столь далеко, чтобы предположить квантовую природу всего электромагнитного излучения.

Идея Планка пребывала в забвении в течение нескольких лет. Затем ею воспользовался Эйнштейн для объяснения фотоэффекта и постулировал, что все электромагнитное излучение имеет квантовый характер (состоит из квантов излучения - фотонов). Идея Планка получила признание и в 1918 году ему была присуждена Нобелевская премия.

Волновая природа света была установлена в начале XIX века, когда ряд экспериментов по дифракции и интерференции света ниспроверг конкурировавшую с волновой корпускулярную теорию света. Теория фотоэффекта Эйнштейна снова вызвала к жизни представление о свете, как о потоке частиц. Не означает ли это, что надо отбросит волновую теорию и вернуться к старой корпускулярной? Или же свет играет двойственную роль (то частиц, то волн)? Тогда может быть и электрон, который считали частицей, ведет себя подобно волне?

Ответы на эти вопросы были получены в 20-х годах нашего столетия, когда эксперименты показали, что и свет, и электроны могут обнаруживать свойства как волн, так и частиц. Этот корпускулярно-волновой дуализм был введен в качестве основного принципа в создаваемую в те годы волновую механику, или квантовую теорию.

Разнообразные эксперименты демонстрируют двойственную природу излучения и вещества: электрон распространяется наподобие волны, а свет взаимодействует подобно частицам. Как же описать “частицы света” и “электронные волны”?

Излучение всегда состоит из набора (суперпозиции) волн с разными частотами. Если эти частоты заключены в узкой области около центральной частоты, то интерференция соответствующих волн оказывается конструктивной в одной области пространства и деструктивной во всем остальном пространстве. Такая локализованная группа колебаний называется волновым пакетом. Волновой пакет электромагнитного излучения (т.е. фотон) распространяется как целое со скоростью света. В случае фотона желтого света волновой пакет состоит примерно из 600000 колебаний.

В эксперименте со щелями электроны ведут себя как волны и создают интерференционные эффекты аналогично световым волнам.

Два важных заключения, имеющих решающее значение для развития квантовой теории:

1. Отдельные электроны или фотоны обнаруживают волновое поведение, состоящее в том, что они способны интерферировать сами с собой.

2. Отдельные электроны или фотоны имеют корпускулярное поведение, состоящее в том, что они взаимодействуют с веществом только в дискретных точках; но указать места, где происходят такие взаимодействия в каждом отдельном случае, можно только в вероятностном смысле.

Действительно ли существует дуализм волна-частица? Как понимать тот факт, что электроны и фотоны появляются иногда в облике частиц, а иногда в облике волн? Может быть, это “кентавры” - наполовину волны, а наполовину частицы? А может быть они способны трансформироваться из одного обличья в другое?

Ответ на эти вопросы становится ясен, если четко представить себе, что когда мы описываем поведение электрона или фотона, как поведение частицы или волны, то мы навязываем классическое описание объектам, имеющим существенно неклассическую природу. Электроны и фотоны не подчиняются законам классической механики - их поведение правильно описывается только квантовой механикой. Поэтому нет ничего удивительного, что при использовании классических представлений для описания квантовых объектов возникает некоторая двусмысленность.

Для математического описания процессов взаимодействия электронов и фотонов с веществом вводится величина, которая называется волновой функцией частицы или фотона. Эта функция обычно обозначается буквой пси - j и используется для вычисления вероятности того, что частицу или фотон можно обнаружить (по их взаимодействию с веществом) в данной точке.

В квантовой механике на энергию свободной частицы, движущейся в пространстве, не накладывается никаких ограничений. Такая частица может иметь любую длину волны и любую кинетическую энергию. Зависимость между кинетической энергией и импульсом является квадратичной

 

В случае свободной частицы нет различий между результатами классической и квантовой механики энергию. Однако если ограничить движение частицы, то обе теории уже не будут приводить к одинаковым результатам.

Рассмотрим движение частицы в ограниченном пространстве между точками x=0 и x=L. Можно представить себе, что частица движется между двумя непроницаемыми стенками, совершая прямолинейное движение то в прямом, то в обратном направлениях. В этом случае никаких ограничений на энергию частицы не существует.

Рассматривая движение квантовой частицы при тех же условиях, мы должны принять во внимание ее волновые свойства. При этом существенно, что волновая функция частицы должна обращаться в нуль при x=0 и x=L, поскольку частица не имеет права покинуть это ограниченное пространство. Это означает, что в “ящике” должны помещаться стоячие волны де Бройля, что возможно при условии, что на длине 2L укладывается целое число длин волн.

Вероятность обнаружить частицу в какой-либо точке внутри “ящика” пропорциональна квадрату пси-функции. В результате внутри “ящика” имеются области, где эта вероятность равна нулю, что противоречит классическим представлениям.

Частица в “ящике” может обладать только определенными значениями энергии. В отличие от классического варианта квантовая частица может иметь на параболе зависимости E от p только отдельные значения (точки).

Второй важный результат состоит в том, что частице запрещено иметь нулевую кинетическую энергию, т.е. частица внутри “ящика” не может находиться в состоянии покоя. Ибо в этом случае частица имела бы равный нулю импульс и, следовательно, бесконечно большую длину волны де Бройля.

Под частицей мы понимаем нечто локализованное в пространстве. Согласно классической теории, частица в каждый данный момент занимает вполне определенное положение и имеет точно определенную скорость движения.

Квантовая теория не может предсказать результат отдельного события, однако она дает с большой точностью средние значения для большого числа событий. В этом и состоит основной смысл принципа неопределенности.

Принцип неопределенности является одним из проявлений корпускулярно-волнового дуализма излучения и вещества. Волну нельзя локализовать в пространстве, и поэтому любое измерение положения объекта, обнаруживающего волновые свойства, принципиально сопряжено с неопределенностью.

 

Атомы, молекулы, кристаллы

Первую количественную теорию атома разработал в 1913 г. датский физик Нильс Бор (теория атома водорода). Он принял предложенную Резерфордом модель атома с сосредоточенным в центре ядром и внешними электронами. Согласно классической теории такая система может быть устойчивой, если электроны находятся в движении. Таким образом, атом должен быть подобен миниатюрной Солнечной системе, в которой роль Солнца играет ядро, а планет - электроны. Однако согласно классической теории движущиеся электрические заряды должны излучать энергию в виде электромагнитных волн. Расчеты показывали, что электрон в атоме водорода должен излучить всю энергию за ничтожную долю секунды (порядка 10-9 с). Однако в атоме этого не происходит.

Бор предположил, что классическая электромагнитная теория к атому не приложима, что энергия электрона не теряется на излучение, когда он движется по орбите; электрон излучает энергию только тогда, когда он совершает переход между двумя разрешенными орбитами, причем энергия испущенного фотона равна разности энергий электрона на этих орбитах.

Для невозбужденного атома радиус орбиты составляет  м. При возбуждении атома электрон перескакивает на одну из более удаленных от ядра орбит. Радиусы возможных орбит описываются формулой

 

где  - постоянная Планка, m - масса электрона, e - заряд электрона, n - главное квантовое число, фиксирующее порядковый номер орбиты электрона.

Таким образом, Бор предположил, что момент импульса электрона квантуется.

Бор подвергся суровой критике за попытку ниспровергнуть господствовавшие в течение столетий классические теории. Сам Бор затруднялся дать надлежащее объяснение фундаментального значения такой странной смеси классической динамики и гипотезы квантования. Прошло более 10 лет, прежде чем развитие новой квантовой механики позволило объяснить замечательные результаты Бора.

К середине 20-х годов стало ясно, что теория строения атома Бора-Зоммерфельда, будучи сплавом как классических, так и квантовых представлений, не может дать полного и удовлетворительного объяснения свойств атомов. В 1925-1926 гг. родился новый взгляд на природу атомных процессов, основанный не на использовании орбит электронов и электронных “прыжков” с одной орбиты на другую, а на описании волновых свойств электронов. Классическое представление об орбитах было отброшено; его заменила волновая механика или квантовая теория элементарных процессов.

В 1925 г. Вернер Гейзенберг и Эрвин Шредингер дали эквивалентные математические описания поведения электрона, а Гаудсмит и Уленбек ввели понятие спина электрона. В следующем году Макс Борн дал вероятностную интерпретацию волновой функции. В 1928 г. Паули сформулировал принцип, позволивший объяснить расположение атомных электронов по оболочкам (в данной электронной системе, в атоме или молекуле, состояния всех электронов различны), Гейзенберг сформулировал принцип неопределенности, а П.А.М.Дирак разработал релятивистскую квантовую теорию.

Эти достижения позволили получить ответ почти на любой вопрос, связанный со строением атомов. По своему значению квантовая теория соизмерима, а может быть и превзошла сформулированный Ньютоном закон всемирного тяготения и объяснение движения планет.

Микрочастица не имеет положения и скорости в макроскопическом смысле этих понятий. Обычные механические величины применимы в микромире с ограничениями. Существо дела состоит в том, что нельзя рассматривать электрон изолированно, вне взаимодействия с другими микрочастицами. Следовательно, нельзя говорить и о траектории электрона в атоме, его орбите.

В атоме нет электронных орбит, есть электронное облако. Атомное ядро как бы окружено облаком отрицательного заряда, особенно плотным на тех расстояниях от ядра, которые Бор считал радиусами орбит. Это облако есть облако вероятности нахождения электрона. Электронные облака имеют различную форму у различных атомов. Форма и протяженность облака меняются при изменении энергии атома.

Можно ли представить себе электрон? (в атоме) Орбитали дают нам представление только о том, в каких точках пространства вероятнее всего нахождение электрона в данный момент времени. Сказать же точно, где он находится в данный момент времени в атоме, мы не можем потому, что это невозможно вообще. И представить себе электрон мы не можем, потому что в нашем мире нет наглядных объектов, с которыми можно было бы его сопоставить.

При рассмотрении состояния электрона в атоме физики вводят представление об электронном облаке. Форма и эффективные размеры его определяются квантовыми числами n и l и меняются при переходе электрона из одного состояния в другое - отождествлять электронное облако с электроном нельзя.

Чтобы описать размеры и форму электронного облака, используется функция “пси” (волновая функция), которая дает возможность определить вероятность обнаружения электрона с данными квантовыми числами в некотором элементе объема.

Движущийся по орбите электрон можно рассматривать, с одной стороны, как некую корпускулу (с определенными массой, энергией, зарядом), а с другой - как некую волну, длина которой укладывается на длине орбиты целое число раз (это число есть главное квантовое число).

Состояние электрона в атоме определяется набором квантовых чисел:

n - главное квантовое число, 1,2,3... - число уровней энергии. При

n = 1 значение энергии соответствует основному состоянию атома. В основном состоянии атом обладает наименьшим значением энергии. Все состояния атома при n>1 называют возбужденными.

Существенной особенностью всех атомов и молекул является их способность удерживать электроны в ограниченной области пространства. Вследствие волновой природы частиц свободный электрон, движение которого ограничено размерами этого пространства L, должен вести себя подобно звуковой волне, распространяющейся то в одну, то в другую сторону в помещении с абсолютно отражающими стенками. В соответствии с условием обращения в нуль волновой функции электрона на границах пространства допустимы лишь волны, у которых на отрезке длиной L укладывается целое число полуволн. Таким образом, допустимы лишь определенные волновые функции, или, иначе, определенные состояния электрона. Эти условия такие же, как для случая стоячих волн на струне.

Итак, электрон - частица с определенным зарядом и массой, проявляющая специфические волновые свойства и приобретающая поэтому дискретные значения энергии в атоме или молекуле.

Второе квантовое число l называют орбитальным или побочным, оно подчеркивает “неравноценность” всех электронов в данной оболочке.

Орбитальный момент импульса квантуется, принимая только значения, кратные h:

L = lh, l = 0, 1, 2 ... n - 1 Орбитальное квантовое число - l может иметь только положительные значения от 0 до n-1.

Форма электронного облака зависит от значения квантового числа l. Если оно равно нулю, то электронное облако имеет сферическую форму. Если - 1, то форму вращения, полученную из “восьмерки”. При больших значениях - более сложную форму.

Так как момент импульса - вектор, он имеет не только численное значение, но и направление. Обычно не существует такой физической величины, которая имела бы выделенное направление в пространстве, и поэтому направление L не имеет значения. Однако в магнитном поле некоторое направление в пространстве оказывается выделенным. Связь магнитного поля с направлением момента импульса обусловлена тем, что орбитальный электрон подобен крошечному магниту, и поэтому взаимодействует с магнитным полем.

Так как движущийся заряд отрицателен, магнитный момент, обусловленный орбитальным движением электрона, направлен противоположно моменту импульса и, подобно ему, квантуется: величина проекции момента импульса на направление поля определяется квантовым числом m.

Вообще проекция орбитального момента на направление поля равна

Lz = mh,

где m - магнитное квантовое число, которое может иметь значения -l, -l+1, -l+2, ... -1, 0, 1, ... l-2, l-1, l, т.е. всего 2l+1 значений.

Кроме того, электрон, как находящийся внутри атома, так и свободный, имеет некий внутренний, так называемый собственный момент импульса, называемый спином, S.

S = sh, где s - спиновое квантовое число, которое может иметь только одно значение: s = 1/2. Поэтому существуют только две разрешенные проекции S на выбранное направление +1/2 и -1/2, так как проекции L и S могут отличаться только на величины, кратные h.

И в классической, и в квантовой физике заряженное тело, обладающее моментом количества движения, является магнитом.

Орбитальный магнит направлен по оси орбиты. Что касается спинового магнетизма электрона, то для его наглядного изображения следует представить электрон в виде твердого тела, вращающегося вокруг собственной оси (по-английски to spin - крутить волчок).

Но у электрона нет орбиты, и волчком он не является. Тем не менее он имеет и орбитальный и спиновый магнетизм.

Таким образом, электрон в атоме характеризуется четырьмя квантовыми числами n, l, m, s, выражающими четыре физических величины: энергию, орбитальный момент количества движения, его проекцию на выделенное направление в пространстве (направление магнитного поля) и такую же проекцию спинового момента. Без этих квантовых чисел нельзя понять основных свойств атома, а также физического смысла периодического закона Менделеева.

 

Периодический закон Менделеева

Очевидно, что периодичностью должны обладать свойства электронов в атомах. Если атомы состоят из ядер и электронов, и электроны могут существовать в различных состояниях, то именно эти электронные состояния ответственны за физическое и химическое поведение атомов.

Для понимания распределения электронов по доступным им состояниям необходимо иметь в виду два принципа.

Первый: при прочих равных условиях электрон должен находиться в том состоянии, в каком его энергия минимальна. Если электрону сообщена большая энергия и он имеет возможность перейти на более низкий энергетический уровень, то он это сделает. При этом избыток энергии выделится ввиде света или иным путем.

Второй принцип - запрет Паули. Разберем последовательно строение атомов ряда элементов, помня, что атомный номер элемента выражает число электронов в атоме.

Водород. Наименьшее возможное значение энергии единственного электрона в атоме H соответствует наименьшему значению главного квантового числа n, т.е. 1. Следовательно, l = 0 (наибольшее значение l есть l-1), m = 0 и s имеет произвольное значение +1/2 или -1/2.Главное квантовое число записывается цифрой, а число l - буквой: l=0 - s, l=1 - p, l=2 - d, l=3 - f и т.д. (g, h, i, ...) Значит, в атоме водорода электрон имеет состояние 1 s. В атоме гелия He - два электрона. Они оба могут быть в состоянии 1 s, но согласно принципу Паули их спиновые числа должны иметь разные знаки: +1/2 и -1/2. Обозначив спиновые числа стрелками, можно представить состояния атомов водорода и гелия следующим образом:

1s

H 

He 

У лития три электрона. Третий электрон уже не может попасть в клеточку 1s (принцип Паули не допускает этого). Следовательно, у третьего электрона должно возрасти главное квантовое число: n = 2. Он попадает в состояние 2s.

1s 2s

Li  

Be  

В каждой клеточке может быть не более двух электронов. Пятый атом бора должен попасть в следующую клетку. Но при n=2 число l может иметь уже два значения: l=0 и l=1. При l=0 число m равно 0 и только 0, а при

l=1 m имеет три значения -1, 0 и 1. Соответственно состоянию с n=2,

l=1, т.е. 2p, принадлежит уже три клеточки, в каждой из которых может поместиться по два электрона с антипараллельными спинами.

Теория и спектроскопия показывают, что заполнение p-клеток происходит по правилу: электроны располагаются прежде всего по клеткам, отвечающим различным значениям квантового числа m так, чтобы все спиновые стрелки смотрели в одну сторону. Это значит, что суммарный спин атома должен быть максимальным.

У атома He электронами использованы все возможности, отвечающие главному квантовому числу n=1, и таких возможностей только 2. У атома Ne заполнены все клеточки, отвечающие n=2; таких клеток 4 и в каждой по 2 электрона, всего 8 электронов.

У следующего за неоном элемента Na начинается новая оболочка: одиннадцатый электрон попадает в состояние 3s и т.д.

Сказанного достаточно, чтобы понять, чем определяется периодичность свойств элементов, открытая Менделеевым. За физические и химические свойства атома ответственны прежде всего его внешние электроны - те электроны, у которых главные квантовые числа имеют наибольшее значение. Обладая наибольшей энергией, эти электроны легче других могут быть отделены от атома, они дальше отстоят от ядра и легче поддаются различным воздействиям. Внутренние электроны, входящие в состав заполненных оболочек, защищены от этих воздействий внешними электронами.

 

Квантовые переходы и излучение

Почти все свойства атомов - химические, электрические, магнитные, оптические и т.д. - зависят от конфигураций внешних электронов. Только в случае очень сильного воздействия на атом в игру вступают сильно связанные внутренние электроны.

Если сообщить атому достаточную энергию за счет столкновения с быстрым электроном (как это происходит в рентгеновской трубке) или облучая его фотонами большой энергии, то удается выбить один из внутренних K-электронов. Электрон с более удаленной от ядра L-оболочки перейдет на K-оболочку и займет освободившееся место, испуская при этом жесткий фотон. В конце концов, после всех переходов с одной оболочки на другую и испускания серии рентгеновских квантов, из окружающей среды внешней оболочкой будет захвачен свободный электрон и атом вернется в электрически нейтральное состояние.

 

Атомы и молекулы

Ядра имеют положительный электрический заряд и окружены роем отрицательно заряженных электронов. Такое электрически нейтральное образование называют атомом. Атом есть наименьшая структурная единица химических элементов.

Атомные электроны образуют весьма рыхлые и ажурные оболочки. Распределение электронов по оболочкам подчиняется определенным правилам, установленным квантовой механикой. Электроны, находящиеся на внешних оболочках атомов, определяют их реакционную способность, т.е. их способность вступать в соединение с другими атомами.

Связь атомов возможна, если совместная внешняя оболочка целиком заполнена электронами. Такое образование называют молекулой. Молекула есть наименьшая структурная единица химического соединения. Число возможных комбинаций атомов, определяющих число химических соединений, составляет около 106.

Некоторые атомы (углерода и водорода) способны образовывать сложные молекулярные цепи, являющиеся основой для образования макромолекул, которые проявляют уже биологические свойства.

В природе лишь немногие атомы существуют поодиночке, поскольку у большинства элементов атомы химически нестабильны. Для того, чтобы атом был стабильным, его внешняя электронная оболочка должна быть заполнена определенным числом электронов (у водорода и гелия - 2, у остальных - 8).

Атомы с незаполненными внешними электронными оболочками способны вступать в химические реакции, образуя связи с другими атомами. Реакции сопровождаются перегруппировкой электронов, в результате которой внешняя электронная оболочка у каждого из атомов оказывается заполненной.

Соединением называют вещество, в котором атомы двух или более элементов объединены в определенном соотношении. Соединение характеризуется определенным составом и определенным набором свойств, отличающихся от свойств элементов, из которых оно состоит. Например, свойства воды отличаются от свойств водорода и кислорода, из которых она состоит.

Молекула - это мельчайшая частица соединения, сохраняющая все его свойства (соединения с ионными связями, как например, NaCl, состоят не из молекул, а из ионов). Атомы могут соединяться в молекулы, если энергия связанных атомов окажется меньшей, чем суммарная энергия изолированных атомов.

Кристалл образуется путем регулярного повторения расположения атомных групп в пространстве. Существует 14 различных основных типов кристаллов. Кристаллы могут быть ионными (кристаллы поваренной соли) и ковалентными (графит, алмаз). Металлы образуют еще один тип кристаллических структур, в которых внешние электроны не связаны с каким-либо определенным атомом; эти электроны могут свободно перемещаться внутри металла (электроны проводимости). Металлы со свободными электронами в межатомном пространстве являются хорошими проводниками. В ионных и ковалентных кристаллах каждый электрон связан с определенным атомом или парой атомов; свободные электроны отсутствуют. Поэтому кристаллы типа NaCl или алмаза плохо проводят электричество.

 

Мир реальных макрообъектов - статистическая физика

Выход книги Дарвина “Происхождение видов” (1859) совпал с открытием Дж. Максвеллом статистического закона о распределении молекул по скоростям, который допускает случайные события. С теорией естественного отбора Дарвина и законом Максвелла в науку вошло представление о динамических и статистических закономерностях. Первые точно определяют поведение отдельных тел, вторые - вероятность поведения тел, входящих в большие ансамбли.

В физике, химии и биологии встречаются статистические закономерности, отличие которых от законов механики состоит в том, что статистические закономерности управляют системами, состоящими из огромного числа объектов, подверженных случайным событиям. Случайными называют события, которые зависят от множества причин, связи между которыми не представляется возможным установить. Но при многократном повторении случайных событий проявляются определенные закономерности.

Открытие законов механики послужило основой для формирования механистической картины мира, согласно которой миром правят строгие однозначные законы, не допускающие никаких случайностей. Течение всех процессов определялось начальными условиями, мир представлялся состоящим из вечных, неделимых частиц, движение которых всегда можно описать с помощью законов механики.

Согласно представлениям того времени чья-то смерть или рождение, хорошая погода сегодня или война в будущем были предопределены существовавшим до этого расположением и скоростью частиц, составляющих Вселенную. “Природа проста и не роскошествует излишними причинами”, - утверждал один из создателей механистической картины мира - Исаак Ньютон. С открытием статистических закономерностей, которые вошли в науку с работами Дарвина, Максвелла, Больцмана, начали формироваться новые представления о мире, которые более адекватно отражали существующие в нем взаимосвязи.

Статистическая физика приняла завершенный вид после работ американского физика Дж.У.Гиббса, который дал общий метод вычисления усредненных макроскопических величин для произвольной системы.

Для описания движения планет, космического корабля, работы простых механизмов используют уравнения механики, которые позволяют определить положения и скорости всех частей системы. Но уравнения механики становятся бессильными, когда число частиц в системе очень велико, например, когда надо описать поведение газа или электрического тока.

Статистическая физика изучает свойства сложных систем - газов, жидкостей, твердых тел и их связь со свойствами отдельных частиц - атомов и молекул, из которых эти системы состоят. Для таких систем не нужно слишком детального описания. Нельзя измерить энергию и импульс всех молекул газа. В газе мы измеряем давление, которое есть результат ударов большого числа молекул; сопротивление кристалла есть следствие большого числа столкновений электронов с атомами. Во всех физических системах, состоящих из большого числа частиц, изучаются величины, усредненные по многим частицам.

Ансамбль (статистический) - совокупность одинаковых физических систем многих частиц, находящихся в одинаковых макроскопических состояниях, в то время как микросостояния могут быть различными.

 

Тепловое равновесие и флуктуации. Неравновесные состояния и релаксация

Релаксация - процесс установления термодинамического равновесия в макроскопической физической системе. Под временем релаксации разумеют время установления равновесия в системе. Время релаксации существенно зависит от размеров системы, а именно оно растет с увеличением размеров макротел. Это означает, что малые части макросистемы приходят в равновесие значительно быстрее, чем все тело в целом.

В связи с этим можно ввести понятие о локальном равновесии, т.е. равновесии в точке, под которой понимается элемент объема тела, достаточно малый по сравнению с размерами самого тела, но содержащий достаточно большое количество молекул или атомов.

При локальном равновесии “точка среды” характеризуется свои местным значением температуры, а сама неравновесная среда описывается “полем температур”. С течением времени неполное равновесие всей замкнутой системы превращается в полное, температура для всех ее частей постепенно выравнивается. В равновесных системах давление и температура постоянны по всему объему тела. Если же в теле имеется какое-то распределение давлений и температур, значит система неравновесная. Из-за наличия перепадов (градиентов) давления в таком теле возникают внутренние макроскопические движения, характеризующиеся некоторым распределением скоростей.

 

Тепловая физика: от Карно к Гиббсу

С.Карно, “Размышления о движущей силе огня и машинах, способных развивать эту силу”, 1824 г. Основная идея: тепловая машина производит работу благодаря передаче тепла от источника - нагревателя, находящегося при температуре T1, к холодильнику, находящемуся при температуре T2<<T1, т.е. от более нагретого тела к менее нагретому. С.Карно впервые разработал метод циклов. Цикл - это последовательность процессов, которые возвращают в конечном счете всю систему участвующих в них тел в первоначальное состояние. На основе цикла Карно сформулирован второй закон термодинамики.

Согласно второму закону термодинамики, во всякой изолированной (т.е. не испытывающей никаких воздействий со стороны других тел) системе самопроизвольно протекают только такие процессы, которые приводят ее в состояние, не изменяющееся в дальнейшем с течением времени. Такое состояние системы называется тепловым равновесием. Оно может достигаться в системе и тогда, когда она не является изолированной, но находится в неизменных внешних условиях.

Хорошо известный пример: тепло всегда переходит от горячего тела к холодному, пока температуры обеих тел не станут одинаковыми и не установится тепловое равновесие. Однако понятие теплового равновесия значительно сложнее.

С точки зрения кинетической теории состояние теплового равновесия возникает как результат равенства скоростей прямого и обратного процессов (например, равенства скоростей испарения и конденсации в замкнутом сосуде с жидкостью).

Следует подчеркнуть, что равенство это выполняется лишь в среднем (для не слишком малых промежутков времени и не слишком малых объемов): при переходе к малым временам и малым объемам наблюдаются отклонения от теплового равновесия, или флуктуации, обусловленные неточным совпадением скоростей противоположно направленных элементарных процессов в каждый данный момент.

Состояние теплового равновесия устойчиво. Понятие теплового равновесия применимо не только к выравниванию температуры вследствие переноса тепла, к фазовым превращениям, к химическим реакциям, но и к любым явлениям природы - физическим, химическим, биологическим, космическим: любая система при неизменных внешних условиях с течением времени всегда приходит в состояние теплового равновесия и никогда самопроизвольно из него не выходит.

Термодинамики устанавливает критерии теплового равновесия. Американский физик Дж.У.Гиббс, один из создателей классической и статистической термодинамики, придумал для расчета равновесий метод термодинамических потенциалов, или характеристических функций.

Согласно Гиббсу, существуют такие функции, которые в состоянии теплового равновесия достигают минимума. Например, если процесс происходит при заданных температуре и давлении, то в состоянии теплового равновесия минимума достигает свободная энергия Гиббса; в теплоизолированной системе, находящейся при постоянном объеме, - внутренняя энергия.

 

Энергия, температура, энтропия

Немецкий физик Р.Клаузиус ввел функцию S, которую он назвал энтропией и сформулировал второй закон термодинамики (1865): “При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает”.

Вот несколько равноценных формулировок второго начала термодинамики:

1) невозможно построить вечный двигатель второго рода, то есть машину, которая работает за счет тепла окружающей среды;

2) работу можно получить лишь выравнивая перепады каких-либо параметров системы (температуры, давления, электрического потенциала);

3) в замкнутой (то есть не получающей энергии извне) системе прирост энтропии всегда положителен;

4) все самопроизвольно протекающие процессы в замкнутых системах идут в сторону наиболее вероятного состояния системы.

Австрийский физик Л.Больцман открыл физический смысл энтропии и причины ее роста в изолированных системах: энтропия - мера беспорядка в системе. Полный порядок соответствует минимуму энтропии; любой беспорядок увеличивает ее. Максимальная энтропия соответствует полному хаосу. Энтропия жидкости больше, чем твердого тела; а энтропия газа больше чем энтропия жидкости.

Больцман впервые ввел понятие термодинамической “вероятности состояния системы”. Всякая система, состоящая из очень большого числа частиц, будет переходить от состояний менее вероятных к состояниям более вероятным, осуществляющимся большим числом способов. Связь между энтропией S и числом способов реализации данного состояния (термодинамической вероятностью) P дает формула Больцмана: S=klnP+const, где  - постоянная Больцмана. Или S=klnW. Читается эта формула так: энтропия замкнутой системы прямо пропорциональна натуральному логарифму термодинамической вероятности состояния системы.

Когда энтропия системы достигает максимума, то никакие процессы в ней невозможны. Но при этом необходимо различать микропроцессы и макропроцессы. В природе необратимы все макроскопические процессы, они протекают в направлении возрастания энтропии. Необратимым является такой процесс, который в обратном направлении может протекать только как одно из звеньев более сложного процесса.

Одному и тому же макросостоянию может соответствовать множество микросостояний, которые с течением времени непрерывно сменяют друг друга, хотя на макроуровне может не наблюдаться никаких изменений. Действие закона возрастания энтропии при протекании процессов в замкнутых системах проявляется только на макроуровне.

Энтропия, как и энергия, - функция состояния системы. Энергия проявляется в работе. Энергия как функция состояния системы характеризуется определенными координатами, а работа равна разности энергий системы при переходе ее из одного состояния в другое.

В соответствии с законом сохранения энергии все формы движения материи могут переходить одна в другую. Но существуют “ловушки”, в которых различные виды движения материи превращаются в тепловое движение -трение, электрическое сопротивление, теплопроводность. А это превращение необратимо. В конце концов вся энергия системы превращается в энергию теплового движения и рассеивается в окружающем пространстве, а энтропия системы достигает максимума.

Энергия и энтропия всегда рядом. Энергия дает жизнь каждому листику, травинке, движение облакам, рекам, ветру. А энтропия? Если бы ее не было, все процессы в мире стали бы обратимыми. Книга соскользнет на пол и расползется на волокна, раскрутятся гайки и винты, на нас обрушится какофония звуков, которую произведут все происшедшие на Земле удары грома, выстрелы, взрывы, музыка, речь людей... В таком мире все виды движения материи будут долго превращаться друг в друга без потерь, но как бы мы прожили в этом мире?

 

Ближний и дальний порядки в природе

Ближний порядок - относительно упорядоченное расположение соседних частиц внутри малых объемов вещества. Дальний порядок - регулярное периодическое расположение частиц вещества по всему занимаемому им объему.

Строгое определение порядка и беспорядка математики дали лишь где-то в начале 60-х годов ХХ века.

Сравним две записи:

1) 1010101010101010101010101010101010101010

2) 1100001101010000001110101000001110011001

Для записи первого числа достаточно сказать: повтори набор 10 двадцать раз, для записи второго нужно продиктовать все 40 цифр.

Степень беспорядка может быть определена объемом информации, которую надо сообщить для записи числа.

3) 000011100000001111111111000000011111100000000

Данная запись характеризуется микроскопическим беспорядком (последовательности цифр чередуются как попало), но макроскопическим порядком (часто встречаются длинные последовательности нулей и длинные последовательности единиц).

Тело или система с идеальным макроскопическим беспорядком, в котором все направления равноценны, называется изотропным.

Тело, в котором разные направления неравноценны, называют анизотропным.

Распределение молекул в газах является примером осуществляющегося в природе полного, совершенного беспорядка в расположении и движении частиц.

ХасХс (гр.) - полный беспорядок. Хдаос - в древнегреческой мифологии бездна, наполненная мраком и туманом, из которого произошло все существующее.

 

Микропорядок и макропорядок. Ближний и дальний порядок

Модель 1: мешки с картошкой, уложенные штабелями. Центры мешков образуют правильную трехмерную решетку, а внутри мешка полный беспорядок. Макроскопический дальний порядок есть, микроскопического нет.

Модель 2: мешки с картошкой свалены как угодно, у каждого в среднем двенадцать соседей. От дальнего макроскопического порядка мы избавились, а ближний остался.

Деление порядка на ближний и дальний, на макроскопический и микроскопический могут сочетаться, как угодно, и все случаи действительно встречаются в мире молекул и кристаллов.

Особенно интересны такие сочетания в мире живого, где мы находим случаи отсутствия микроскопического порядка и наличия дальнего макроскопического. Так обстоит дело в структуре мышц, в молекулах ДНК.

Если молекулы предоставлены сами себе и на них не действуют мешающие их тепловому движению силы, то наиболее вероятным является беспорядочное распределение молекул. Беспорядочным является такое состояние, когда средние скорости молекул во всех точках пространства одинаковы.

В любой области знаний мы сталкиваемся с проблемами порядка и беспорядка (информация, генетика, суждения людей...) Например макроскопическим порядком обладают суждения людей о спортивных достижениях (измеряемые в баллах), о понятиях добра и красоты...

 

Фазовые переходы и симметрия

Переходы вещества из одной фазы в другую при изменении состояния системы называют фазовыми превращениями. Фаза - совокупность телесных объектов с определенным химическим составом и термодинамическими свойствами, отделенная от других фаз поверхностью раздела. Или иначе: фаза - это однородная часть неоднородной системы.

Фазовый переход - переход вещества из одной термодинамической фазы в другую при изменении внешних условий.

Фазовый переход первого рода - сопровождается скачкообразным изменением внутренней энергии и плотности.

Фазовый переход второго рода - отсутствует скачкообразное изменение внутренней энергии или плотности.

Фазовые переходы второго рода связаны с изменением порядка. Вблизи температуры фазового перехода степень порядка сколь угодно близка к нулю. Поэтому фазовый переход второго рода не требует затрат энергии.

При фазовых переходах второго рода происходит изменение внутренней симметрии тел. Примерами таких переходов могут служить: 1) переход металла в сверхпроводящее состояние; 2) переходы ферромагнетик - парамагнетик; 3) переход жидкого гелия в свертекучее состояние.

 

Необратимость - неустранимое свойство реальности. Стрела времени

Мир - это непрерывно хаотически движущиеся атомы и молекулы. Однако как это связать с гармонией и красотой окружающего нас макромира?

Джон Холл (XVII век): “Если то, что мы называем Вселенной, случайно зародилось из атомов, которые неутомимы в своем вихревом движении, то как случилось, что ты прекрасна, а я влюблен?”

Чем объясняется направленность процессов в окружающем мире? Закон, при помощи которого можно предсказать направление эволюции какой-либо физической системы, называется вторым началом термодинамики. Одна из его формулировок гласит: замкнутая система сама по себе, т.е. самопроизвольно, переходит из менее вероятного состояния в более вероятное.

Закон возрастания энтропии можно сформулировать следующим образом: во всех замкнутых системах энтропия никогда не убывает, она либо остается постоянной, либо возрастает. Соответственно этим двум возможностям все процессы, которые могут происходить с телами, делятся на обратимые и необратимые. Первые из них могут протекать как в прямом, так и в обратном направлениях, поскольку энтропия при этом не меняется; для вторых - это невозможно, поскольку связано с уменьшением энтропии.

По мнению ряда авторов, наблюдаемое в лабораторных экспериментах направление времени тесно связано с направлением времени, характерным для Вселенной в целом. Возможно, следует предположить существование некоторого взаимодействия (может быть, гравитации), наличие которого вообще делает в принципе невозможным строгую изоляцию системы, и именно это взаимодействие “диктует” направление времени во всех частях Вселенной (Ф.Кемпфер, 1972).

Развитие материальных систем во Вселенной происходит необратимым образом - от прошлого к будущему. Это означает, что течение времени асимметрично: оно направлено от прошлого (через настоящее) к будущему, причина всегда предшествует следствию, “стрела времени” всегда устремлена в будущее.

Не следует слишком упрощенно понимать связь стрелы времени с космологическими процессами: стрела времени не будет изменять свое направление на обратное, если Метагалактика когда-нибудь перестанет расширяться и начнет сжиматься. Если наблюдатели могли бы только по часам судить о происходящих во Вселенной процессах, то они, вероятно, даже не заметили бы, что расширение Метагалактики сменилось сжатием.

Литература

1.   Аронов Р.А. Квантовый парадокс Зенона/ Природа, 1992, 12

2.   Ильин В.Г., Илясов Ю.П., Кузьмин А.Д. Пульсары - независимые стандарты времени/ Природа, 1990, 2

3.   Киржниц Д.А. Элементарная длина/ Природа, 1991, 10

4.   Фролов В.П. Черные дыры, “кротовые норы” и машина времени/ Природа, 1991, 8

5.   Хокинг С. Стрела времени/ Природа, 1990, 1

 

Тема 1.3. Физика как целое Иерархия структур природы

Выделяют три крупных структурных уровня организации Вселенной:

- мегамир (Галактики, Метагалактика)

- макромир (человек, окружающая среда, планета)

- микромир (элементарные частицы, атомы, молекулы)

С точки зрения физиков иерархия объектов природы выглядит следующим образом: элементарные частицы - ядра - атомы - молекулы - макротела (кристаллы, жидкости, газы, плазма) - планеты - звезды - галактики -Вселенная. Биологи предлагают следующую иерархию биологических систем: макромолекулы - органоиды - клетки - ткани - органы - системы органов - организмы - популяции - виды - биоценозы - биосфера.

В социологи можно выделить следующие уровни социальной организации: семья - род - племя - нация - цивилизация (?)

Микромир

Элементарные частицы и фундаментальные взаимодействия. В природе существуют качественно различные связанные системы объектов - ядра, атомы, макротела, звездные системы. Существует нечто такое, что скрепляет части системы в целое. Чтобы разрушить систему частично или полностью, нужно затратить энергию. Взаимное влияние частей системы характеризуется энергией взаимодействия, или просто взаимодействием.

В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу основных фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному.

Гравитационное взаимодействие (тяготение). Притяжение тел к Земле, существование солнечной системы и галактик обусловлено действием сил тяготения, или, иначе, гравитационными взаимодействиями.

Эти взаимодействия универсальны, т.е. применимы к любым микромакрообъектам. Однако они существенны лишь для астрономических объектов, для формирования структуры и эволюции Вселенной как целого. Гравитационные взаимодействия очень быстро ослабевают с уменьшением массы объектов и практически не играют роли для ядерных и атомных систем.

Источником гравитации являются массы тел, а дальность гравитационного взаимодействия неограниченна.

Закон всемирного тяготения (Ньютон): гравитационная сила, с которой притягиваются друг к другу две частицы (тела), обратно пропорциональна квадрату расстояния между их центрами и прямо пропорциональна произведению их масс.

где G - гравитационная постоянная =

Электромагнитные взаимодействия. Ими обусловлены связи в атомах, молекулах и обычных макротелах. Радиус их действия также не ограничен, но оно преобладает внутри вещества: определяет химические связи, излучение света, намагничивание, словом, все явления, наблюдаемые в молекулах и атомах. Гравитационное взаимодействие здесь не сказывается из-за его малой силы, а слабое и сильное - из-за их короткого радиуса действия. Энергия ионизации атома, т.е. энергия отрыва электрона от ядра определяет значение электромагнитного взаимодействия, существующего в атоме.

Сильные (ядерные) взаимодействия. Наличие в ядрах одинаково заряженных протонов и нейтральных частиц говорит о том, что должны существовать взаимодействия, которые гораздо интенсивнее электромагнитных (в сотни раз), ибо иначе ядро не могло бы образоваться. Эти взаимодействия проявляются лишь в пределах ядра на расстояниях менее 10-13 см. Сильное взаимодействие скрепляет нуклоны в ядре и кварки внутри нуклонов.

Нуклон-нуклонная сила не является “чистой” силой притяжения. На расстояниях порядка 10-14 см она становится силой отталкивания. Мы до сих пор не знаем природы этих сил во всех деталях; их разгадка является одной из главных проблем современной ядерной физики.

Слабые взаимодействия. Слабое взаимодействие существует между любыми парами элементарных части. Радиус их действия не больше, чем у ядерных сил, а может быть, и равен нулю.

Обнаруженная в 1896 году Беккерелем радиоактивность была первым сигналом о наличии слабых взаимодействий. Оказалось, что слабое взаимодействие принимает участие в некоторых термоядерных реакциях, поддерживающих излучение Солнца и других звезд.

Оно является единственным взаимодействием, существующим между электроном и нейтрино

Это взаимодействие виртуально (на короткое время) превращает каждый протон ядра в нейтрон, позитрон и нейтрино, а каждый нейтрон - в протон, электрон и антинейтрино.

Слабое взаимодействие вызывает переходы между разными типами кварков, бета-распады нуклонов в ядрах. При бета-распаде один из трех кварков, составляющих нуклон, переходит в кварк другого типа и излучает электроны и антинейтрино.

Нейтроны имеют массу, превышающую приблизительно на 1 МэВ сумму масс протона и электрона. Поэтому свободный нейтрон распадается на протон, электрон и антинейтрино с выделением энергии приблизительно 1 МэВ. Время жизни свободного нейтрона примерно 10 мин.

Аналогичное событие происходит с мюоном - он распадается на электрон, нейтрино и антинейтрино. Перед тем, как распасться, мюон живет около 10-6 с.

40 лет понадобилось физикам, чтобы прийти к убеждению, что слабое взаимодействие переносится сверхмассивными частицами - в 100 раз тяжелее протона. Эти частицы имеют спин 1 и называются векторными бозонами (открыты в 1983 г.)

Значительное число медленных распадов элементарных частиц сопровождается излучением нейтрино. Эта частица крайне слабо взаимодействует с веществом. Длина пути между двумя столкновениями нейтрино с частицами вещества в среде с обычной плотностью - 1017 км. Следовательно, Земля для нейтрино совершенно прозрачна.

По своей величине основные взаимодействия располагаются в следующем порядке: сильное (ядерное) - электрическое - слабое - гравитационное.

Физики пытаются уловить связь между силами природы. Выяснилось, что электромагнитное и слабое взаимодействия связаны друг с другом. Электромагнитное поле представляет собой часть более общего электрослабого поля, состоящего из нескольких компонент. Элементарные частицы - кварки и лептоны - излучают и поглощают кванты электрослабого поля, которыми являются фотоны и бозоны.

Радиус действия слабых сил см. На этом масштабе они объединяются с электромагнитными силами, а на меньших масштабах электрослабые поля неразделимы.

Дальше начинается область гипотез. Согласно большинству из них, электрослабые взаимодействия объединяются с сильными на масштабе  см. Трудно представить себе эксперименты на таких малых масштабах. Однако решающий эксперимент для проверки этого, так называемого Великого объединения может быть проведен в ближайшие годы. Дело в том, что почти неизбежным следствием Великого объединения является нестабильность протона. Это процесс, при котором в нуклонах происходят превращения кварков в антикварки и лептоны.

Вероятности таких превращений очень малы, иначе просто не существовали бы ни мы сами, ни окружающая нас ядерная материя - она бы рассыпалась на более легкие частицы. По теоретическим оценкам время жизни протона должно составлять лет. Это намного больше, чем возраст Вселенной. Но даже такие крайне редкие события можно попытаться обнаружить.

Другое вероятное следствие Великого объединения - это существование монополей, одиночных магнитных зарядов. Их масса должна быть фантастически велика. Опыты по обнаружению космических монополей сейчас ведутся.

Эйнштейн предполагал возможность объединения электромагнитного взаимодействия с гравитационным. Теперь это будет Суперобъединение - все четыре силы природы сводятся к одной, исходя из какого-то фундаментального принципа. В последнее время все чаще высказывается мысль, что этот принцип геометрический, как и принцип общей теории относительности.

Протон. Стабильная частица, ядро атома водорода. Вместе с нейтронами протоны образуют атомные ядра всех элементов, причем число протонов в ядре определяет атомный номер элемента. Протон имеет положительный электрический заряд в точности равный абсолютной величине заряда электрона. Протон в 1836 раз тяжелее электрона. С современной точки зрения протон не является истинно элементарной частицей: он состоит из трех кварков. Эксперименты по рассеянию электронов на протонах свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Размеры протона около см. Протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц. Время жизни протона  лет, что во много раз больше возраста Вселенной (лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни.

Нейтрон. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд равен нулю. Состоит из трех кварков. Устойчив лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон, электрон и электронное антинейтрино. Время жизни нейтрона около 15 мин. Они возникают в природе или получаются в лаборатории в результате ядерных реакций. Масса нейтрона 1840. Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. Они играют важную роль в ядерной энергетике.

Кварки вначале рассматривались как чисто математические структурные элементы, открывающие возможность удобного описания адронов. Эксперименты выявили наличие внутри нуклона точечных заряженных образований, которые отождествили с кварками.

Название было заимствовано М.Гелл-Маном в одном из романов Дж. Джойса. В переводе с немецкого “кварк” - “творог”, но в романе это слово означает нечто двусмысленное и таинственное; герою снится сон, где чайки кричат: ”Три кварка для мистера Марка”. Термин вошел в научный обиход, возможно, потому, что соответствовал двусмысленной и таинственной роли кварков в физике.

Кварк - частица со спином 1/2 и дробным электрическим зарядом. Помимо спина кварки имеют еще две внутренние степени свободы - “аромат” и “цвет”. Каждый кварк может находиться в одном из трех “цветовых” состояний, которые условно называют “красным”, “синим” и “желтым”. Все три состояния одинаково поглощают и испускают кванты света. Массы всех цветовых состояний также строго одинаковы.

“Ароматов” известно пять и предполагается существование шестого: truth, beauty, charmed, strange, down, up (правдивый или истинный, прелестный или красивый, очарованный, странный, низ, верх). Свойства кварков с различными “ароматами” различны.

Каждый кварк может быть окрашен в любой из трех цветов, иметь по два спиновых состояния +1/2 и по два зарядовых состояния. Это дает 6x3x2x2, т.е. 72 варианта.

Обычное вещество состоит из легчайших u- и d-кварков, входящих в состав нуклонов ядер. Более тяжелые кварки рождаются искусственно.

Кварки участвуют во всех известных взаимодействиях - гравитационных, слабых, электромагнитных и сильных. Неизвестно, из чего состоят сами кварки; возможно, они элементарны. Их собственный размер, во всяком случае, меньше .

В свободном состоянии кварки до сих не наблюдались, и есть теоретические соображения, которые указывают на невозможность таких состояний для кварков.

Лептоны - частицы, не участвующие в сильном взаимодействии. Лептоны как и кварки, рассматривают как бесструктурные точечные частицы, как истинно элементарные.

Электрон - отрицательно заряженная элементарная частица, носитель наименьшей известной сейчас массы, и наименьшего электрического заряда в природе. Заряд электрона примерно равен  Масса электрона примерно

Электрон стабилен, время его жизни не менее  лет. Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях.

Нейтрино - электрически нейтральная частица. Вероятно существует не более 4-6 типов нейтрино. Масса покоя нейтрино обычно считается равной нулю, как у фотона. Но в отличие от фотона для этого нет серьезных оснований. Японские и американские физики определили массу покоя электронного нейтрино в пределах 11 - 13,4 эВ/с2.

Нейтрино столь же распространенная частица как и фотон. Нейтрино образуется в слабых распадах атомных ядер и элементарных частиц. Мощные потоки нейтрино испускаются звездами в результате происходящих в их недрах термоядерных реакций. Предполагается, что нейтрино в изобилии рождаются при гравитационном коллапсе звезд. Наконец, все пространство заполнено нейтринным газом, оставшимся от ранних этапов развития Вселенной.

К частицам - переносчикам взаимодействий относятся: глюоны, фотоны и массивные промежуточные бозоны.

Взаимодействия элементарных частиц представляются как своеобразная игра в мячики: перебросом глюонами осуществляется связь между кварками, обмен фотонами происходит в актах взаимодействия электрически заряженных частиц, массивные промежуточные бозоны ответственны за медленные распады частиц и за чрезвычайно слабое взаимодействие всех типов нейтрино с веществом.

Фотон - квант электромагнитного поля, элементарная частица с нулевой массой покоя и спином, равным единице. Масса покоя, равная нулю, означает, что фотон невозможно ни остановить, ни замедлить. Независимо от своей энергии он обречен двигаться с фундаментальной скоростью c.

Фотон - наиболее распространенная из всех элементарных частиц. Он встречается и в потоках видимого света, и в рентгеновском излучении, и в виде радиоволн, и в лазерных импульсах.

В 1964 г. американские радиоастрономы А.Пензиас и Р.Вильсон обнаружили, что мировое пространство заполнено миллиметровыми радиоволнами, которые можно рассматривать как холодный фотонный газ при температуре 2,7 K. По современным представлениям, это излучение (его называют реликтовым) возникло на ранних стадиях развития Вселенной. Средняя плотность реликтовых фотонов составляет около 500 в 1 см3. Интересно, что плотность протонов во Вселенной в среднем не более одного на 1 м3. Таким образом, во Вселенной фотоны встречаются в миллиард раз чаще, чем протоны.

Античастицы. К настоящему времени экспериментально обнаружены античастицы почти всех элементарных частиц. Частица и соответствующая античастица имеют одинаковые времена жизни, одинаковые массы, их электрические заряды равны, но противоположны по знаку. Самым характерным свойством пары частица-античастица является способность аннигилировать (самоуничтожаться) при встрече с превращением в частицы другого рода.

Античастицы могут собираться в антивещество. Так в Серпухове на ускорителе получен антигелий-3, у которого ядро состоит из двух антипротонов и одного антинейтрона и окружено оболочкой из пары позитронов.

Частицы и соответствующие им античастицы одинаково взаимодействуют с полем тяготения; это указывает на отсутствие “антигравитации”.

Несмотря на микроскопическую симметрию между частицами и античастицами, во Вселенной до сих пор не обнаружены области со сколько-нибудь заметным содержанием антивещества. Свидетельством присутствия антивещества во Вселенной было бы мощное аннигиляционное излучение, приходящее из областей соприкосновения вещества с антивеществом. Ведь аннигиляция только 1 г вещества и антивещества приводит к выделению  Дж энергии, что эквивалентно взрыву средней атомной бомбы в 10 килотонн.

Вселенная в основном состоит из обычного вещества. Но так было не всегда. На ранней стадии развития Вселенной при очень больших температурах  количество частиц и античастиц совпадало: на большое количество антипротонов (примерно на каждые несколько миллиардов) приходилось столько же протонов и еще один “лишний” протон. В дальнейшем при остывании Вселенной все частица и античастицы проаннигилировали, породив в конечном итоге фотоны, а из ничтожного избытка частиц возникло все, что нас теперь окружает.

Идея о возникновении во Вселенной асимметрии между частицами и античастицами впервые была высказана А.Д.Сахаровым.

Ядра. Атомные ядра представляют собой связанные системы протонов и нейтронов (нуклонов). Массы ядер всегда несколько меньше суммы масс свободных нуклонов, составляющих ядро. Это релятивистский эффект, определяющий энергию связи ядра.

В отличие от массы электрические заряды ядер строго равны сумме зарядов, входящих в ядро протонов. Известны ядра с зарядом от 1e до 107e и с числом нуклонов от 1 до примерно 260. Особенно устойчивыми ядрами являются ядра с числами протонов или нейтронов 2, 8, 20, 28, 50, 82, 126, получившими название магических.

Плотность массы ядер  Радиусы ядер от  (ядро гелия) до  (ядро урана). Периоды полураспадов изменяются в пределах от  лет до  с.

Физический вакуум как реальность

Физика микромира описывается квантовой механикой и теорией относительности, и эти две теории не допускают существования пустоты. Если откачивать воздух из замкнутого сосуда, то в принципе можно удалить все вещество, но при этом все-таки не получится классической пустоты.

Что же останется в “пустом” сосуде? В вакууме имеются квантовые флуктуации полей и виртуально рождаются частицы.

Вакуум - это состояние с наименьшей энергией при отсутствии вещества. Но отсутствие вещества еще не означает отсутствия частиц. Как известно, число частиц не сохраняется в реакциях. Сохраняются энергия, электрический, барионный и лептонный заряды, но число частиц может меняться.

Если приложить достаточно энергии, из вакуума можно рождать частицы. Дело в том, что энергия может переходить в поле, а поле - в частицы.

Ну а если не прикладывать энергии и рассматривать свойства чистого вакуума? Казалось бы, эти свойства никак не связаны со свойствами частиц, рождающихся из вакуума в присутствии источников энергии. Так было бы в классической механике, но в квантовой механике это не так. Известное соотношение неопределенностей приводит к тому, что на короткое время любая система может перейти в состояние, отличающее на дельта E по энергии.

Такие переходы называются виртуальными. Так как по теории относительности энергия может переходить в массу, то виртуальные переходы соответствуют рождению частиц на короткое время. Например для протона это время равно около  с.

В атомной физике эффекты, вызываемые виртуальными частицами, довольно незначительны. Однако чем более мелкие частицы рассматриваются, тем большую роль играет окружающий их вакуум со своими виртуальными частицами. Например, в ядерном веществе протоны имеют меньшую массу, чем в вакууме, где к этой массе добавляется масса “налипших” виртуальных пи-мезонов.

На уровне кварков свойства вакуума уже играют решающую роль. Невозможность существования свободных кварков, по всей вероятности, связана именно с колоссальными изменениями, которые одиночный кварк вызывает в вакууме.

На свехмалых расстояниях свойства вакуума еще более загадочны. Неожиданно возникает связь квантовых эффектов с гравитационными. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. Но пока еще невозможно представить себе какие бы то ни было эксперименты при очень больших энергиях и в столь малых масштабах пространства.

 

Макромир

При определенных условиях однотипные атомы или молекулы могут собираться в огромные совокупности - макроскопические тела (вещество). Простое вещество является атомарным, сложное - молекулярным.

При достаточно низких температурах все тела являются кристаллическими. В кристаллах взаимное расположение атомов является правильным. Для них характерно равновесное положение в узлах кристаллической решетки. Их движение сводится к колебаниям вблизи этих узлов.

Геометрия кристаллического состояния отличается необычайным разнообразием, но число типов решеток ограничено. Свойства веществ определяются не только характером атомов, но и их взаимным расположением (графит и алмаз). Тела могут сильно различаться в отношении механических, тепловых, электрических, магнитных и оптических свойств.

Подавляющее большинство твердых тел имеет кристаллическое строение. Даже глина состоит из маленьких кристалликов. Свойства твердого тела зависят от строения кристаллического зерна, размера кристалликов, их взаимного расположения и силы, сцепляющей их в единое тело.

Общий порядок в расположении кристаллических зерен называется текстурой. Наличие текстуры очень сильно влияет на механические свойства изделия.

Аморфные твердые тела противопоставляются кристаллам и по некоторым свойствам они скорее должны быть причислены к жидкостям, нежели к твердым телам. Аморфное тело типа стекла содержит признаки как твердого, так и жидкого тела: расположение атомов обладает лишь ближним порядком, но атом в своем движении остается в неизменном окружении - соседи не обмениваются местами.

К аморфным телам относится большое число органических веществ, например, пластмассы, органические стекла.

“Жидкие кристаллы” или жидкое твердое тело - к этому обширному классу веществ относятся многие органические и биоорганические вещества. Такое состояние наблюдается в определенном интервале температур. Если нагреть жидкий кристалл, он превратится в обычную жидкость, если охладить - станет кристаллом.

Эти вещества сочетают в себе свойства жидкости и кристалла. Обнаружены два типа жидких кристаллов: в первом расположение молекул обладает ближним порядком, однако все молекулы располагаются параллельно друг другу; во втором - молекулы располагаются слоями.

Мыло, растворенное в воде, образует жидкие кристаллы, с чем связаны его моющие свойства. Мыльный раствор состоит из большого числа двойных слоев молекул.

При повышении температуры происходит фазовый переход кристалл-жидкость (плавление). Каждое вещество имеет свою строго определенную температуру плавления.

В жидком состоянии атомы уже не являются строго локализованными. Тепловое движение в жидкостях носит довольно сложный характер.

Молекулы жидкости совершают в основном колебательные движения, положения равновесия не строго фиксированы, но молекула остается в окружении все тех же соседей. Легкость, с которой молекула может менять своих соседей, связана с вязкостью.

При переходе жидкости в пар (испарение) при атмосферном давлении вещество практически полностью теряет свою индивидуальность. Это связано с малой плотностью газообразного вещества. В разреженных газах по существу отсутствует взаимное влияние атомов, а значит, не проявляется их индивидуальная атомная структура. Газы всех веществ (при нормальных условиях) с хорошей точностью подчиняются одинаковым закономерностям.

Дальнейшее повышение температуры  ведет к ионизации атомов, т.е. распаду их на ионы и свободные электроны. Такое состояние вещества называют плазменным.

Поскольку ионы и электроны в отличие от атомов несут не скомпенсированные электрические заряды, их взаимное влияние становится существенным. Плазма в противовес газам может проявлять коллективные свойства, что сближает ее с конденсированным состоянием, т.е. с твердыми телами и жидкостями.

Макротела астрономического масштаба - планеты. Масса Земли приблизительно  г, радиус - 6400 км, средняя плотность 5,5 г/см3. В недрах планет вещество находится под высоким давлением. При сжатии вещества проявляется тенденция “сглаживания” его свойств. Наружные электронные оболочки атомов, ответственные за “индивидуальность”, при давлениях  атм перестают существовать, ибо входящие в их состав электроны отрываются от атомов и становятся коллективными.

Земля - планета жидкая. Это утверждение звучит парадоксально, поскольку течения вещества Земли почти незаметны для нас. Они, однако, существуют, их скорость составляет несколько см в год. В результате за 0,5 млрд. лет земная поверхность меняется очень существенно.

По настоящему твердой является только тонкая (20-40 км) оболочка -кора Земли. Вещество на глубинах от 40 до 400 км способно течь под влиянием высоких температур и давлений.

Мантией называют весь слой глубиной от 40 до 2920 км, где температура недр повышается примерно до 4,5 тыс. градусов. Ниже мантии вещество находится в расплавленном состоянии. Это жидкое ядро Земли радиусом 3450 км. Наконец, в самом центре Земли есть еще внутреннее твердое ядро радиусом 1250 км, состоящее из вещества с плотностью около 13 г/см3.

Кора Земли, называемая литосферой, состоит из отдельных плит, медленно перемещающихся друг относительно друга. Новая земная кора образуется в районах срединно-океанических хребтов, а старая кора, покрытая трехкилометровым слоем осадков, исчезает, ныряя под континенты.

Взаимные перемещения плит, рождение и разрушение твердой коры Земли сопровождаются землетрясениями. Когда погружающаяся литосферная плита попадает в зону высоких температур, происходят химические реакции, преобразующие ее осадочный слой. При этом образуются газы и водяные пары, которые вулканами извергаются в атмосферу, и возможно, что органическое вещество осадков частично переходит в нефть.

Именно вулканическая деятельность привела к появлению первичной атмосферы Земли, а вода, образовавшаяся при дифференциации вещества мантии, составила Мировой океан.

 

Мегамир Звезды. Галактики. Вселенная

Солнце: масса г, радиус км, средняя плотность , находится от Земли на расстоянии около  см, которое свет проходит за 499 с - это расстояние называют астрономической единицей а.е. Самая далекая от Солнца планета Плутон находится от него на расстоянии около 39,75 а.е.

Центральные области Солнца имеют температуру около K и давление около  атм. В этих условиях вещество является полностью ионизованной плазмой: голые ядра и свободные электроны. При этом становятся возможными термоядерные реакции (слияние ядер водорода и превращение их в ядра гелия), которые служат источником энергии звезд. Масса Солнца 1030 кг.

Галактики - это звездные системы. Число звезд в них порядка . Наша Галактика состоит приблизительно из  звезд. Со стороны она представляет собой диск, утолщающийся к центру. Это диск имеет спиральную структуру и вращается с переменной угловой скоростью, большей в центральных областях диска, меньшей на его периферии.

Расстояния в галактиках измеряются в парсеках. Парсек (пс) около  см, или 3,2 светового года = 206265 а.е.

Толщина Галактики вблизи Солнца 2000 пс. Диаметр ее диска 30 000 пс. Солнце вместе с его планетной системой находится вблизи края Галактики, приблизительно в 10 000 пс от ее центра.

Кроме звезд в Галактике имеются и другие виды материи (пыль, межзвездный газ, космические лучи. Масса Галактики около кг.

По данным спутника “Прогноз-9”, наша Галактика мчится в направлении созвездий Девы и Льва со скоростью более 500 км/с.

Поскольку размеры звезд невообразимо малы по сравнению с галактическими масштабами, то Галактику можно рассматривать как очень разреженный газ, в котором роль молекул играют звезды. Это газ настолько разрежен, что столкновения между его “молекулами” не происходят. Естественно, он не ограничен (?) стенками какого-либо сосуда. Почему же он не разлетается? Ответ заключается в том, что вся эта система держится силами собственного тяготения.

Средняя плотность материи в Галактике около . Средняя концентрация атомов равна 3 атомам на 1 см3. Сравним: в нормальных условиях в 1 см3 газа содержится 2,6x1019 молекул.

Известная нам часть Вселенной содержит около 1011 галактик. Мир галактик во Вселенной довольно разнообразен. Таких галактик, как наша (спиральных), приблизительно 80%. Встречаются неправильные галактики, имеющие достаточно произвольные геометрические очертания, и эллиптические, близкие по форме к эллипсоидам различной вытянутости.

Число звезд различно: карликовые галактики имеют приблизительно звезд, гигантские - до  звезд. Большинство галактик подобно нашей имеет  звезд.

Одиночные галактики встречаются редко. Подавляющее большинство их образует скопления, насчитывающие сотни и тысячи членов. Скопления не рассыпаются на отдельные галактики благодаря силам собственного тяготения. Как говорят, они являются гравитационно связанными объектами.

Размеры скоплений галактик исчисляются мегапарсеками (Мпс), т.е. миллионами парсек.

Скопления галактик, в свою очередь, образуют сверхскопления, содержащие десятки членов. Может быть такой процесс будет продолжаться без конца? Оказывается, нет. Согласно данным современных астрономических наблюдений, сверхскопления являются наиболее крупными структурными образованиями в Метагалактике - наблюдаемой части Вселенной.

Галактики, их скопления и свехскопления - это элементы ячеистой структуры Вселенной. Размеры ячеек - сотни мегапарсек, толщина их стенок порядка 2-4 Мпс. Крупные скопления располагаются в узлах ячеек. Сверхскопления представляют собой элементы этой ячеистой структуры.

В масштабах, превышающих тысячи мегапарсек, Вселенная бесструктурна. Более того, можно утверждать, что в таких масштабах она вообще однородна и изотропна, т.е. ее свойства везде одинаковы.

Всегда ли распределение материи во Вселенной было и будет таким, как сейчас? Ответ отрицателен, потому что Вселенная эволюционирует.

 

Вариационные принципы

Всякая наука стремится свести к минимуму число принципов или законов, лежащих в ее основе. Значение вариационных принципов заключается в том, что каждый из них заменяет несколько частных законов. Например, принцип Ферма эквивалентен отражения и преломления света, принцип наименьшего действия - законам механики.

Открытие вариационных принципов имеет многовековую историю. Герон Александрийский (I в.) сформулировал следующий оптический постулат: ”Скажу, что из всех лучей, падающих из данной точки и отражающихся в данную точку, минимальны те, которые отражаются под равными углами”. (Для сферических зеркал постулат Герона не всегда верен).

В XYII веке знаменитый французский математик П.Ферма сформулировал принцип, представляющий обобщение утверждения Герона: ”свет всегда идет по пути, требующему для своего прохождения минимального времени”.

Вариационные принципы механики ведут начало своей истории с конца XVII в.(И. Бернулли) и первой половины XVIII в. - французский ученый П.Мопертюи выдвинул вариационный принцип механики - принцип наименьшего действия. Согласно этому принципу, “путь, которого свет придерживается, является путем, для которого количество действия будет наименьшим”. Под действием Мопертюи понимал произведение скорости на длину пути.

Л.Эйлер, Ж.Лагранж и У.Гамильтон придали понятию действия содержание, используемое и сейчас. Произведение скорости на длину пути можно преобразовать в произведение квадрата скорости на время, заменив путь произведением скорости на время. Если ввести еще постоянный множитель, равный массе тела, деленной на 2, то получим произведение кинетической энергии на время, что и стало определением действия при отсутствии сил. При наличии сил действие равно среднему значению разности между кинетической и потенциальной энергией, умноженному на время движения. Был создан специальный математический аппарат для решения задач, связанных с применением принципа Ферма, или принципа наименьшего действия. Этот аппарат получил название вариационного исчисления, а соответствующие принципы стали называться вариационными принципами.

Понятие действия приобрело в физике особое значение после введения в 1900 г. немецким физиком М.Планком, основателем квантовой физики, кванта действия, равного фундаментальной постоянной h.

Сопоставление принципов Ферма и Мопертюи натолкнуло французского ученого Л. де Бройля в 1920-х гг. на идею о наличии у частиц вещества волновых свойств, что вскоре было подтверждено на опыте.

Э.Шредингер провел глубокий анализ вариационных принципов оптики и механики и ввел уравнение, носящее его имя.

Значение вариационных принципов заключается в том, что, зная действие и пользуясь этими принципами, можно вывести уравнение движения для любой системы.

 

Принцип дополнительности

Развитие ньютоновской теории способствовало становлению детерминистского взгляда на природу. Согласно этому мировоззрению, можно определить положения и скорости всех тел в замкнутой системе в какой-то момент времени, и если известны все силы взаимодействия между телами, то можно полностью рассчитать поведение системы в будущем. Иными словами, будущее системы предопределено.

На практике провести такой расчет невозможно. Даже если положение только одного тела в системе определено с малейшей неточностью, в результате взаимодействия этого тела с другими неточность будет расти постепенно по величине, так что по прошествии достаточно длительного времени поведение системы будет существенно отличаться от предсказываемого законами Ньютона.

Однако кроме этой практической трудности, существует еще и другое, принципиальное ограничение, обусловленное квантовой теорией и принципом неопределенности. При этом физикам приходится иметь дело с вероятностями.

В 1927 г. В.Гейзенберг, анализируя возможность измерения координаты и импульса электрона, пришел к заключению, что условия, благоприятные для измерения положения, затрудняют нахождение импульса, и наоборот -эти два понятия дополнительны друг другу.

Соотношение DpxxDx>=h называют соотношением неопределенностей. Иными словами, координата и скорость частицы не могут иметь одновременно строго определенных значений. Указанное обстоятельство ведет к тому, что если в некоторый момент времени известна координата электрона, то уже в следующий как угодно близкий момент времени его координата становится совершенно неопределенной. Мы вынуждены говорить лишь о вероятности нахождения электрона в той или иной точке пространства. Понятие траектории электрона в этих условиях полностью теряет смысл.

Соотношение неопределенностей имеет весьма общее значение и применимо не только к электронам, но и к другим микрообъектам.

Еще одним примером соотношения неопределенностей является связь между неопределенностями в энергии и времени.

Дополнительными являются угловое положение вращающегося тела и его момент количества движения.

Соотношение неопределенностей - частный случай и конкретное выражение общего принципа дополнительности, сформулированного Н.Бором в 1927 (28) году: если в каком-либо эксперименте мы можем наблюдать одну сторону физического явления, то одновременно мы лишены возможности наблюдать дополнительную к первой сторону явления.

Принцип дополнительности Бор применял во многих областях. Так, например, физическая картина явления и его математическое описание дополнительны. Создание физической картины требует пренебрежения деталями и уводит от математической точности, а попытка точного математического описания затрудняет его ясное понимание.

Квантовая механика не дает однозначного ответа на некоторые вопросы, а лишь предсказывает вероятность того или иного результата.

Принципиальная неопределенность некоторых величин есть следствие применения классических понятий к описанию неклассических объектов.

 

Принципы симметрии и законы сохранения

Обычно под термином “симметрия” понимают либо зеркальную симметрию (левое - правое), либо центральную.

В физике под этим термином понимают неизменность не только предметов, но и физических явлений, и не только при отражении, но и вообще при какой-либо операции - при переносе установки из одного места в другое или при изменении момента отсчета времени.

Самая простая симметрия - однородность и изотропность (эквивалентность всех направлений) пространства. Она означает, что любой физический прибор - часы, телевизор, телефон - должен работать одинаково в разных точках пространства, если не изменяются окружающие физические условия. То же самое относится и к повороту прибора, если отвлечься от силы тяжести, которая выделяет на поверхности Земли вертикальное направление.

Физические законы должны быть инвариантны (неизменны) относительно перемещений и поворотов.

Еще одна важная симметрия - однородность времени. Все физические процессы протекают одинаково, когда бы они ни начались.

Законы природы не изменяются и от замены направления течения времени на обратное (разбивающееся яйцо! и молекулы в малом объеме газа).

Симметрия, связанная с изменением направления течения времени, приближенная: ее нарушение наблюдается в слабых распадах некоторых элементарных частиц - нейтральных К-мезонов.

Зеркальная симметрия (волчок, закрученный направо, ведет себя так же, как волчок, закрученный налево) явлений природы неточная, как и большинство других симметрий. В слабых взаимодействиях, ответственных за радиоактивный распад, она нарушается.

Из определенных принципов симметрии выводятся некоторые из законов сохранения.

Прямым следствием симметрии относительно переноса в пространстве является закон сохранения импульса (количества движения).

Импульсом, или количеством движения тела, называют произведение его массы на вектор скорости: p = mv. Для замкнутой системы величина полного импульса P сохраняется. Закон сохранения импульса связан с фундаментальным свойством пространства - однородностью, т.е. равноправием всех точек пространства.

Прямым следствием симметрии относительно вращения является закон сохранения момента импульса.

Прямым следствием симметрии относительно переноса во времени является закон сохранения энергии.

Закон сохранения энергии был точно проверен не только для перехода механической энергии в тепловую, но и для перехода в химическую и электромагнитную, а также для перехода электрической или химической в тепловую.

Закон сохранения энергии является строгим следствием равномерности хода времени. Ход времени определяется относительной скоростью протекания различных процессов в природе. Любое измерение интервала времени означает сравнение ритмов разных процессов. Равномерность хода времени означает, что всегда относительная скорость протекания всех процессов в природе одинакова. Равномерность хода времени установлена на примере излучения атомов. Атомы на звезде излучают свет такой же длины волны, как и атомы сегодняшнего дня, даже если свет был излучен миллиард лет тому назад.

Закон сохранения вещества (массы) после того, как была установлена связь массы с энергией, превратился в закон сохранения энергии.

Важнейшее следствие симметрии состоит в том, что каждой симметрии, как внутренней, так и пространственной, соответствует свой закон сохранения.

Существует еще один закон сохранения: полное число тяжелых частиц (протонов и нейтронов) остается неизменным в природе.

Литература

1.   Адлер С.Л. А.Д.Сахаров и индуцированная гравитация/ Природа,1990,8

2.   Барабаш А.С. Двойной b-распад и его поиски/ Природа, 1995, 2

3.   Бергстром Л., Рубинштейн Г. AMANDA на Южном полюсе: антарктические нейтрино/ Природа, 1996, 11

4.   Бисноватый-Коган Г.С. Пульсары - новые открытия и проблемы/ Природа, 1995, 2

5.   Бисноватый-Коган Г.С. Порядок и беспорядок в астрофизике. Природа,

6.   1996, 6

7.   Варшалович Д.А., Потехин А.Ю. Спектроскопия квазаров и космология/Природа, 1995, 4

8.   Гордеев В.А., Кутень С.А. Круглый ли атом водорода?/ Природа,1990,3

9.   Горелик Г.Е. О сохранности законов сохранения/ Природа, 1992, 7

10.      Далькаров О.Д., Воронин А.Ю. Исследование антиматерии - реальность и перспективы. Природа, 1994, 12

11.      Комар А.А. Нейтрино с массой 17 кэВ?/ Природа, 1991, 8

12.      Комар А.А. Зарницы суперсимметрии/ Природа, 1992, 5

13.      Комар А.А. Проект AMANDA/ Природа, 1996, 11

14.      Кулакова Н.В. Уточняется постоянная Хаббла/ Природа, 1995, 10

15.      Мирабель И.Ф. “Великий аннигилятор” в центральной области галактики. Природа, 1993, 6

16.      Морозов А.Ю. Теория струн и фундаментальные взаимодействия/ Природа, 1990, 1

17.      Печерникова Г.В. Проблема образования дальних планет/ Природа, 1992, 9

18.      Рубченя В.А., Явшиц С.Г. Тройное деление тяжелых ядер/ Природа, 1991,5

19.      Сахаров А.Д. Симметрия Вселенной/ Природа, 1990, 8

20.      Смирнов А.Ю. Резонансные переходы нейтрино в веществе/ Природа, 1991,6

21.      Сонин А.С. Грустная судьба великого открытия (о Фридмане). Природа,

22.      1993, 5

23.      Судьба космогонических идей О.Ю.Шмидта/ Природа, 1991, 9

24.      Цыган А.И. Электрические поля нейтронных звезд. Природа, 1994, 8

Тема 1.4. От физики существующего к физике возникающего Современная физическая картина мира

Картина мира, которую начали создавать Галилей и Ньютон, а завершали Фарадей, Максвелл и Эйнштейн, отражала философские воззрения, которые брали начало еще от древних: природа не делает скачков. Эти представления основывались на непрерывности процессов.

Это мнение изменила квантовая теория, согласно которой вещество при излучении испускает энергию конечными порциями - квантами. Энергия кванта равна произведению постоянной Планка на частоту излучения.

Луи де Бройль писал: ”День, когда была введена постоянная Планка, остается одной из замечательных дат в истории человеческой мысли”.

С постоянной Планка вошло в науку представление о дискретности энергии в микромире; постоянная Планка оказалась связанной с понятием о строении атома.

Каково строение атома? Известно, что на основе экспериментальных данных Резерфордом была создана планетарная модель атома. Это была последняя наглядная его модель. Предложенная Резерфордом модель была катастрофой для классической физики.

Согласно представлениям электродинамики Максвелла, движущийся вокруг ядра электрон должен излучать энергию и поэтому очень быстро упасть на ядро. Получалось, что с признанием модели атома Резерфорда следует пересмотреть классическую электродинамику, которая уже стала основой электромагнитной картины мира. Резерфорд понимал, что “его” атом обречен.

Но в 1913 году Резерфорду пришел пакет от молодого Нильса Бора с наброском его первой работы по квантовой теории строения атома. В этой статье Бор писал:”...существование мира постоянно доказывает, что атом - устойчивая система. Значит, электроны, вращаясь вокруг ядра, вопреки

Максвеллу-Лоренцу, не излучают непрерывно. Так, если это не происходит и они, обессиленные не падают на ядро, не проще ли предположить, что в атоме есть пути, на которых электроны не растрачивают энергию: стационарные орбиты! Только покидая такую орбиту, электрон начинает излучать...” По существу в этих словах выражено содержание знаменитых постулатов Бора, от которых и началась квантовая механика - новая физика.

Бор считал, что электрон, как и микрочастица в классической физике, движется по определенному пути. Эти пути - стационарные орбиты - Бор определял при помощи главных квантовых чисел. Атом может излучать энергию только тогда, когда электрон перескакивает с одной орбиты на другую, причем эта энергия излучается в виде кванта.

Теория строения атома, созданная Резерфордом и Бором, позволила объяснить многие факты, но возникло так много новых вопросов, на которые, как казалось физикам, невозможно было ответить. Эйнштейн писал: ”Это было так, точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было строить...”

Ответ физики нашли, но для этого пришлось отказаться от прежних представлений о микропроцессах. В механической и электромагнитной картинах мира микрочастицы представлялись неизменными, их скорость, координату, энергию можно было определить абсолютно точно в любой заданный момент времени. В современной картине мира совершенно другой взгляд и на сами микрочастицы, и на их поведение.

Французский физик Луи де Бройль в 1924 г. предложил рассматривать дискретные состояния электрона в атоме как волновые явления. Это давало возможность объяснить, почему электрон при своем движении вокруг ядра не излучает энергию (стоячая волна не излучает и не поглощает энергию). Вскоре была открыта дифракция электронов, что подтвердило наличие у них волновых свойств.

Математическое обоснование волновой модели атома дал австрийский физик Эрвин Шредингер. Решение составленного им для описания движения микрочастиц уравнения дает значения величины, известной в физике под названием пси-функции или волновой функции. Эта функция описывает движение электрона. Это движение не подчиняется законам механики Ньютона: если бы мы создали двум электронам абсолютно одинаковые начальные условия, то дальнейшее их движение могло бы быть совершенно различным, чего законы механики не допускают.

Поведение элементарных частиц вероятностное. Обусловлено это тем, что элементарным частицам присущи свойства корпускулы и волны. Для них невозможно с абсолютной точностью одновременно определить координату и импульс, изменение энергии и интервал времени, на протяжении которого происходит это изменение. Соотношения, которые дают возможность увидеть, как связаны между собой неопределенности при определении координаты и импульса, энергии и времени жизни микрообъекта введены в 1927 г. В.Гейзенбергом.

Оказалось, что не только макроскопические законы, определяющие массовый результат поведения микрочастиц, носят статистический характер, но и законы, определяющие поведение частиц в каждый момент времени и в каждой точке, являются статистическими.

Борьба идей дискретности и непрерывности материи завершилась слиянием обеих идей в представлении о свойствах элементарных частиц.

В механической и электромагнитной картинах мира элементарным понятием было движение себетождественной частицы. В МКМ такой частицей был атом, в ЭКМ на роль “абсолютных атомов” (неделимых и неизменных частиц, из которых состоит все сущее) претендовали электрон и протон.

Но открытие нейтрона в 1932 году привело к выводу, что в ядре атомов нет электронов и, значит, они образуются в результате распада нейтрона. Позитроны, открытые в космических лучах, дали возможность наблюдать такие удивительные процессы, как превращение электрон-позитронной пары в фотоны или, наоборот, превращение фотона большой энергии в электрон-позитронную пару.

Эксперименты в области физики высоких энергий изменили представление о мире... Начиная с Демокрита, атомисты объясняли бесконечное разнообразие вещей соединением и разъединением их частей, в этих процессах конечными и неделимыми частицами представлялись атомы. В их вечности и сохранении их числа усматривались доказательства вечности мира.

А в чем же мы видим опору для понимания несотворимости и неуничтожимости мира? Можем ли мы элементарные частицы считать “конечными частицами” материи аналогично тому, как атомисты представляли вечные и неделимые атомы?

Чтобы ответить на этот вопрос, подумаем, чем отличается понятие делимости в классической и современной физике.

Представим себе мысленный эксперимент, в котором моделью “конечной частицы” материи служит тарелка. Возьмем две тарелки и ударим одну о другую. С точки зрения классической физики возможны два случая:

1) тарелки останутся целыми, и тогда они “неделимы”; 2) тарелки разлетятся на кусочки, сложим их - форма тарелок восстановится; масса кусочков равна массе исходной тарелки. Тарелка делима.

Если бы набор посуды имел свойства элементарных частиц, мы наблюдали бы нечто совершенно иное.

Представим себе, что мы ударяем одну тарелку о другую. И ничего не происходит. Ударяем их с большей силой, и вот результат: у нас в руках оказываются две тарелки и одна чашка!

Можно ли их считать осколками двух тарелок? Конечно, нет... Эти образовавшиеся “элементарные частицы” имеют также статус элементарных частиц, как и исходные. Интересно, что масса образовавшихся частиц не обязательно равна массе исходных: она может быть как больше их массы, так и меньше, в зависимости от условий, в которых происходило взаимодействие.

Элементарные частицы - это более или менее стабильные образования материи, которые не делятся на осколки. Основное свойство ЭЧ - взаимопревращаемость. Мы не называем их “конечными частицами” материи и не пытаемся найти “конечные частицы”. Чем глубже мы продвигаемся в направлении увеличения концентрации энергии, тем дальше от нас отодвигается мираж конечных сущностей, “исходных кирпичиков мироздания”.

В современной картине мира ЭЧ - это простейший элемент данного поля, или просто “квант данного поля”. Поля современной физики можно сравнить со стихиями в картине мира древних мыслителей. Если они считали фундаментальными сущностями четыре стихии (землю, воду, воздух, огонь), то современная физика пытается раскрыть все содержание реального мира через проявление четырех видов взаимодействий.

Сильное взаимодействие обеспечивает связь нуклонов в атомных ядрах. Электромагнитное взаимодействие связывает электроны в атомах и атомы в молекулах.

Слабому взаимодействию подвержены все элементарные частицы, кроме фотона. Оно ответственно за распады некоторых частиц и за процессы с участием нейтрино.

Гравитационное взаимодействие действует между всеми материальными объектами.

Свести все разнообразные силы к единой основе, к чему стремилось человеческое знание на протяжении всего развития науки, современной физике пока не удалось.

 

Креативная роль физического вакуума

Произнося слово “вакуум”, мы обычно представляем себе чрезвычайно разреженную среду, которую либо исследуют в специальных лабораториях, либо наблюдают в космическом пространстве. Однако вакуум это не пустота, а нечто совершенно иное: особое, ненаблюдаемое в повседневной жизни состояние материи, называемое физическим вакуумом.

Обычных (реальных) частиц в пустом объеме, конечно, нет, но квантовая теория предсказывает существование множества других частиц, называемых виртуальными. Такие частицы способны при определенных условиях превращаться в реальные.

Время жизни для частиц с массой me около с. Эта величина очень мала и говорит они не столько о “жизни”, сколько о кратковременном всплеске жизни весьма странных частиц и связанных с ними полей.

Итак, море ненаблюдаемых частиц, готовых при определенных условиях превратиться в обычное.

Состояние физического вакуума можно охарактеризовать наименьшим значением энергии таких квантовых полей, как скалярное поле, которое должно существовать в вакууме. Этому полю ставится в соответствие гипотетическая частица хиггс (по имени ученого Хиггса, ее предложившего), которая является примером сверхтяжелого бозона, масса которого, возможно, в  раз больше массы протона). Такие частицы могут рождаться при температуре  K. Существуют проекты огромных ускорителей, где, наблюдая взаимодействие частиц, ученые надеются подтвердить реальность существования хиггсов.

Один из проектов американские инженеры и физики планируют осуществить в конце века. Это будет очень мощный ускоритель на встречных пучках, причем для уменьшения потребляемой энергии в кольцевой установке с длиной окружности 84 км будут использованы сверхпроводящие магниты. Будущий ускоритель назван сверхпроводящим суперколлайдером SSC.

Одно из удивительных свойств физического вакуума связано с тем, что он создает отрицательное давление и, стало быть, сможет оказаться источником сил отталкивания в природе. Это свойство играет исключительно важную роль в сценарии “раздувающейся Вселенной”.

Этапы эволюции горячей Вселенной, неоднозначность сценария и антропный принцип

Космология - раздел (?) астрофизики, изучающий строение и эволюцию Вселенной в целом. Современная космология возникла в начале XX века. Данные астрофизических наблюдений показывают, что крупнейшими структурными единицами Вселенной являются большие скопления и сверхскопления галактик. Их размеры достигают десятков миллионов парсек. В еще больших масштабах (сотни мегапарсек) вещество во Вселенной распределено однородно.

Эйнштейн построил на основе своей теории космологическую модель статичной Вселенной. Исходной гипотезой было предположение о том, что Вселенная однородна и изотропна.

В 1922 г. А.А.Фридман доказал, что статичный мир Эйнштейна всего лишь частный случай решения уравнений ОТО. В общем же случае эти уравнения приводят не к статичным моделям, а к моделям, зависящим от времени. Однородная и изотропная Вселенная должна эволюционировать, т.е. непрерывно изменяться со временем.

В конце 20-х гг. Э.Хаббл установил, что галактики удаляются друг от друга. Это означает, что Вселенная расширяется.

Судьба Метагалактики зависит от средней плотности вещества. Средняя плотность определена как  тогда как критическое значение плотности равно . Однако вполне возможно, что в галактиках существует скрытая масса вещества и действительное значение средней плотности выше критической. Кроме того, если масса покоя нейтрино не равна нулю, как это доказывают физики во главе с В.А.Любимовым, то во Вселенной могут существовать огромные нейтринные запасы: общая масса нейтрино может в 30 раз превысить массу обычного вещества (на один протон приходится почти миллиард нейтрино, а их общая масса в 30 раз больше массы одного протона).

Будет ли расширение Вселенной неограниченно продолжаться в будущем? Расширение тормозится силами тяготения. Тяготение определяется средней плотностью вещества во Вселенной. Критическое значение плотности, при котором расширение в будущем сменится сжатием, равно . Средняя плотность по данным наблюдений ниже критической раз в десять. Следовательно, Вселенная должна расширяться все время.

Однако во Вселенной возможно имеется много невидимого вещества и средняя плотность может быть близка критической.

Поскольку наблюдения показывают, что галактики удаляются друг от друга, значит, в прошлом они были расположены теснее, а еще ранее не могло быть отдельных галактик и вообще отдельных небесных тел. Вещество было распределено почти равномерно, а плотность его была очень большой. Вселенная начала расширяться  млрд. лет назад. При этом центра расширения не было. Все точки во Вселенной равноправны. Что было до начала расширения Вселенной, пока до конца не выяснено, так как при очень больших плотностях материи вступают в действие еще не известные нам законы природы.

В настоящее время большинство исследователей считают, что в начале расширения Вселенной материя была очень плотной  и очень горячей  - теория горячей Вселенной. Согласно этой теории Вселенная напоминала гигантский ускоритель “элементарных” частиц. Началом работы этого ускорителя частиц был Большой Взрыв, следствием которого является наблюдаемый в настоящий момент разлет галактик и их скоплений.

В отличие от обычного взрыва астрономический взрыв произошел сразу во всем существовавшем тогда пространстве.

Пока мало что известно о том, что происходило в первую секунду после начала расширения и еще меньше о том, что было до начала расширения. Общая схема последующей эволюции Вселенной представляется следующим образом.

Эра адронов длилась примерно от  Атомов не было, но существовали нуклоны (протоны и нейтроны), мюоны, электроны и нейтрино различных типов (электронные, мюонные, тау-нейтрино), а также античастицы и электромагнитное излучение (фотоны), которое находилось в термодинамическом равновесии с веществом. Число частиц и античастиц вещества в единице объема было равно числу находящихся там же фотонов.

Главным событием адронной эры был процесс аннигиляции нуклонов и антинуклонов (адронов). Нуклонов было несколько больше, чем антинуклонов, поэтому часть вещества осталась в качестве строительного материала для ядер будущих атомов.

Эра лептонов длилась примерно от  Температура уменьшилась до  K, а плотность стала равной  Лептоны аннигилировали: мюон-антимюон, электрон-позитрон с образованием нейтрино. В результате, качественно изменился состав плазмы и приобрели самостоятельность нейтрино, которые с этого момента перестали участвовать во взаимодействиях. После аннигиляции тяжелых частиц их энергия перешла к более легким частицам и тратилась на нагрев излучения, а после аннигиляции легких частиц освободившаяся энергия стала расходоваться в основном на повышение температуры излучения. В конце лептонной эры произошло образование ядер гелия путем слияния протонов и нейтронов, которых стало около 25%, остальная плазма (75%) состояла из ядер водорода.

Эра радиации длилась от t=10 с до примерно 300 000 лет. К концу этой эры плотность стала равной  а температура уменьшилась до 3000K. Одно из важнейших событий - отрыв излучения от вещества: присоединение электронов к протонам стало преобладать над отрывом электронов от протонов. В результате среда стала прозрачной для излучения.

Эра вещества длится до сих пор. После отрыва излучения от вещества наша Вселенная довольно спокойно расширялась, а главные события, происходившие в ней, были связаны с рождением галактик, звезд и планет.

Перед космологией стоят задачи узнать, почему началось расширение Вселенной, что было до этого, как образовались галактики и многое другое.

А был ли Большой Взрыв? Академик Я.Б.Зельдович (1983):”Теория “Большого Взрыва” в настоящий момент не имеет сколько-нибудь заметных недостатков. Я бы даже сказал, что она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца”.

На чем основана уверенность в справедливости теории “горячей Вселенной”?

Прежде всего отметим те данные, которые не противоречат этой теории.

Возраст Солнечной системы около 4,6 млрд. лет. Возраст самых старых звезд близок возрасту нашей и других галактик - 10-15 млрд. лет. В прошлом далекие внегалактические радиоисточники излучали больше, чем сейчас. Распространенность химических элементов близка к соотношению, которое возникло во времена первичного термоядерного синтеза.

Но главным подтверждением теории “горячей Вселенной” считается открытие реликтового излучения. После “отрыва” излучения от вещества и последующего расширения Вселенной температура излучения падала, но его характер (спектр) сохранился до наших дней, напоминая о далекой молодости Метагалактики. Вот поэтому астрофизик И.С.Шкловский предложил назвать это излучение реликтовым. А.Пензиас и Р.Вильсон получили в 1978 году Нобелевскую премию за открытие этого излучения (1965).

Не все ученые согласны с идеей Большого Взрыва. К их числу относятся такие известные астрофизики, как Х.Альвен (Швеция), Д.Нарликар (Индия) и др.

Дж.Б.Мэрион (1975): Основная трудность состоит в том, что в лаборатории нельзя провести контролируемый космологический эксперимент - мы должны полагаться на наблюдения над объектами, которые лежат на фантастических расстояниях от нас и на которые мы никак не можем влиять. Мы не знаем сколько-нибудь точно массу или размеры Вселенной. Мы не знаем, будет ли наблюдаемое расширение Вселенной продолжаться бесконечно. Мы не знаем, существует ли во Вселенной в каких-либо значительных количествах антивещество, существуют ли антигалактики. Мы не знаем природы квазаров, излучающих гигантскую энергию. Мы знаем не слишком много о деталях эволюции звезд после стадии красного гиганта. Мы не можем понять, почему в космосе существуют молекулы. Мы не имеем надежной теории космических лучей сверхвысоких энергий. И, разумеется, мы ничего не знаем о происхождении Вселенной, хотя имеющиеся данные указывают на то, что ее расширение - это результат происшедшего около 10 млрд. лет назад чудовищного взрыва, мощь которого даже невозможно себе представить. Но откуда взялось это гигантское количество изначальной энергии?

Со времен Коперника люди стали понимать, что наша планета и ее обитатели не занимают какого-либо привилегированного положения в Солнечной системе, Галактике и Метагалактике. Однако мы обитаем в наиболее удобной для этого области Солнечной системы и Галактики, а фундаментальные свойства Вселенной удивительно “подстроены” под тот жесткий набор требований, без которого не могли бы возникнуть ни галактики, ни ни звезды, ни планеты, ни жизнь и разум во Вселенной.

Мы живем в эволюционирующей Вселенной. Появление жизни и разума в нашей Вселенной стало возможным на определенном этапе ее эволюции. Если бы эволюция космический материи происходила несколько иначе, то не было бы ни наблюдаемой структуры Вселенной, ни нас как наблюдателей.

По существу, в современной космологии появился новый взгляд на Вселенную, новый принцип. Согласно известному ранее космологическому принципу, Вселенная выглядит почти одинаково из любой точки пространства (идеальный принцип требует, чтобы Вселенная выглядела совершенно одинаково и в любой момент времени). Теперь же к этому принципу добавляется новый - его называют антропным принципом. Сформулировать его можно разным способом, например: это принцип отбора только тех начальных условий (из всех имеющихся на ранней стадии Вселенной), которые совместимы с существованием разумной жизни.

Антропный принцип не есть новый фундаментальный физический закон. Принцип вообще не эквивалентен закону, а представляет собой один из уровней философского основания науки.

 

Происхождение галактик и Солнечной системы

Происхождение галактик и звезд (космогония) связано с возникновением неоднородностей в однородной среде. Крупномасштабные неоднородности с массой в  солнечных образовали протоскопления галактик, и они представляли собой массивные облака газа. Такие облака приобретали не сферическую форму, а становились похожими на гигантские “блины”.

В разных частях расширяющейся Метагалактики могли возникать разные “блины” по массе, плотности и температуре. Результатом их эволюции было возникновение или скоплений галактик, или одиночных галактик. Специалисты надеются обнаружить “блины”, еще не успевшие превратиться в галактики. Взаимодействуя между собой, “блины” могут образовывать границы наблюдаемых ячеек крупномасштабной структуры Вселенной.

Если нейтрино обладают ненулевой массой, то уже на начальных стадиях расширения Метагалактики решающее значение для последующей эволюции играло появление нейтринных неоднородностей, которые играли роль “теста” для образования “блинов”. Далее предполагается, что нейтринные “блины” образовали ячеистую структуру, которая была невидимой, поскольку невидимы сами нейтринные облака. Когда обычное вещество начало собираться в центральных областях нейтринных облаков, стала проявляться невидимая ячеистая структура Вселенной.

Каждая галактика, возникшая из распавшихся “блинов”, имела свой жизненный путь - в ней возникали шаровые звездные скопления и звезды разных поколений. Например, в нашей спиральной Галактике массивные звезды первого поколения давно завершили свой жизненный путь и, взорвавшись, обогатили межзвездную среду тяжелыми элементами. Часть из них вошла в состав звезд нового поколения.

Звезды последующих поколений формируются в молекулярных облаках, богатых молекулами водорода и других веществ, межзвездной пылью. Частицы пыли в молекулярных облаках способствуют образованию молекул от  и CO до многоатомных молекул ацетона , цианодекапентина  и др. Молекулярные облака располагаются вблизи галактической плоскости, их немало и в областях, прилегающих к ядру Галактики. Столкновения облаков, их уплотнение взрывными волнами, возникающими при вспышках Сверхновых, создают условия для активного зарождения протозвезд.

Звезды малых масс эволюционируют медленно и многие из них дожили до наших дней.

Согласно данным некоторых астрономов, звездообразование в Галактике происходит с определенными перерывами.

По современным представлениям, звезды образуются в результате сжатия (под действием тяготения) облаков холодного газа. Сами эти облака представляют собой части более обширных и массивных комплексов, на которые распалось протогалактическое облако. Стадия будущей звезды, или протозвезды, длится у звезд с массами, близкими к солнечной, несколько миллионов лет. Формирующиеся звезды окружены газо-пылевыми оболочками, которые не пропускают оптическое излучение от разогревшихся в ходе сжатия центральных областей протозвезды.

“Включение” термоядерного реактора означает, что стадия протозвезды закончилась и началась стадия настоящей звезды.

Молодым звездам, массы которых близки к массе Солнца, предстоит долгая жизнь: только на главной последовательности они находятся не менее 10 млрд. лет.

Смена режима работы термоядерного топлива (водород выгорает в ядре, начинается горение в слоях, прилегающих к гелиевому ядру и т.д.) преображает звезду. Она разбухает, проходит стадию красного гиганта, теряет свою оболочку, ядро обнажается, и звезда постепенно превращается в белый карлик, а в будущем станет остывшим черным карликом.

Более массивные звезды взрываются, рассыпаясь в межзвездном пространстве, или оставляют после себя нейтронные звезды или даже черные дыры.

 

Земля: происхождение и динамика геосфер

Разработка космогонических гипотез является результатом усилий многих ученых (Декарт, 1644; Кант, 1775; Лаплас, 1796; в XX столетии -О.Шмидт, Х.Альвен, Ф.Хойл, А.Камерон, Э.Шацман и др.).

Сейчас считается общепризнанным, что планеты возникли в результате объединения твердых тел и частиц, образовавшихся во вращающемся вокруг Солнца гигантском протопланетном облаке, состоящем и газа и пыли. Пока не существует однозначного ответа на вопрос: откуда взялось протопланетное облако? Однако у некоторых звезд, например Веги, обнаружены газово-пылевые диски.

Протопланетное облако содержало газ “звездного” состава (водород и гелий) и пыль из более тяжелых элементов. Сжимающееся облако увеличивало скорость вращения. Пылевой слой, будучи гравитационно неустойчивым, распался на множество сгустков, превратившихся в рой твердых тел. Сначала размеры этих тел были сравнительно невелики, а их орбиты юыли близки к круговым. По мере роста масс увеличивалось взаимное притяжение тел, возрастали их относительные скорости, орбиты становились эллиптическими.

Гравитационное взаимодействие было определяющим фактором в формировании будущих планет. Уменьшение числа зародышей и появление сверхзародышей происходило до тех пор, пока возникающие крупные и массивные тела не оказались на таких расстояниях, где взаимное притяжение не могло уже существенно изменить их орбиты. Эти безопасные расстояния и стали залогом устойчивости будущей Солнечной системы.

Планеты земной группы сформировались сравнительно быстро (Земля за 100 млн. лет), планеты-гиганты росли дольше.

В начале 50-х гг. наука отказалась от представления о первичной огненно-жидкой планете. Было развито представление об изначально холодной Земле. Но теперь ученые говорят если не об огненно-жидкой, то об умеренно горячей планете. Крупные по массам и размерам тела, падая на относительно холодную Землю и глубоко врезаясь в нее, разогревали нашу планету. Такой разогрев оказался сильнее, чем это могло произойти за счет энергии других механических (гравитационное сжатие) и немеханических (радиоактивный распад) процессов. Земля частично плавилась, изменяла свою структуру, формировала ядро и оболочки.

В настоящее время, как известно, Земля имеет расплавленное ядро, состоящее в основном из железа и никеля. Вещества, содержащие более легкие элементы (кремний, магний и др.), постепенно всплывали, образуя мантию и кору Земли. Самые легкие элементы вошли в состав океана и первичной атмосферы.

Самые легкие и легче всего испаряющиеся элементы - водород, углерод, азот и кислород - являются составными частями современной атмосферы и самой жизни. Внешние слои Земли содержали эти элементы не в свободном, а в связанном виде в составе других молекул. Под влиянием разогрева при соударениях вещество теряло летучие элементы, из которых образовалась первичная атмосфера. Некоторые молекулы разрушались в процессе фотодиссоциации под воздействием ультрафиолетового излучения Солнца. В результате атмосфера включала  и небольшое количество водорода. Таким образом, атмосфера была слабо восстановительной.

Состав атмосферы менялся в результате улетучивания атомов и молекул водорода и выделения газов из земной коры, разогретой за счет распада радиоактивных изотопов. Выделение летучих элементов, которое в значительно ослабленной форме происходит и теперь из вулканов, внесло в атмосферу большое количество водяного пара, углекислого газа, азота и окиси углерода. Таким образом, практически вся вода современных океанов выделилась из пород, слагающих ныне кору и верхнюю мантию Земли.

Под влиянием ультрафиолетового излучения молекулы воды, входящие в состав атмосферы, распадаются на атомы водорода и кислорода. Однако, пока молекулы водорода оставались в составе атмосферы, свободные атомы кислорода быстро вступали в реакцию с ними. Как только водород улетучился, в атмосфере образовался свободный кислород, а затем и озон, который образовал озоновый экран, преградивший путь жесткому ультрафиолетовому излучения к поверхности Земли.

Дальнейшие изменения атмосферы, гидросферы и верхних слоев литосферы происходили под существенным влиянием возникшей на Земле жизни. Что же произошло за последние 4 млрд. лет?

 

Роль живых организмов в эволюции Земли

Живое вещество биосферы - это активное начало, преобразующее остальные сферы Земли. Эта роль жизни была впервые обоснована В.И.Вернадским.

Современная атмосфера Земли есть продукт деятельности живых организмов. Как писал Вернадский, “атмосфера всецело создана жизнью”.

Первичная атмосфера нашей планеты имела восстановительный характер, была лишена свободного кислорода и состояла из следующих газов: На первом месте по количеству стояли вода и углекислый газ. Развитие фотосинтеза приводило к освобождению больших количеств свободного кислорода в гидросфере и затем в атмосфере. Аммиак и метан практически полностью исчезают из состава атмосферы в результате окисления. Современная атмосфера является азотно-кислородной и состоит в основном из

Углекислый газ, который когда-то занимал второе место по содержанию в атмосфере, оказался химически связанным в породах, главным образом в виде карбоната кальция (мел, известняк). Почти весь углекислый газ исчез из атмосферы. Небольшие его количества остаются благодаря процессам выветривания и дыхания животных; разложение органического вещества также возвращает этот газ в атмосферу.

Кислород до развития жизни существовал в малых количествах. Фотосинтез синезеленых водорослей, а затем и зеленых растений увеличил его содержание в современной атмосфере до 21%.

Азот, из которого на 78% состоит современная атмосфера, поступил в нее при дегазации, но его сохранению помогло существование жизни. При каждом грозовом разряде в атмосфере часть атмосферного азота соединяется с кислородом и образует окислы азота, которые благодаря осадкам попадают в почву и океаны. В почве живут денитрифицирующие бактерии, которые разлагают окислы азота и возвращают его в атмосферу.

Окись углерода, которая была важным компонентом земной атмосферы, давно соединилась с кислородом и превратилась в углекислый газ, который, как отмечено выше, сконцентрировался в углеродсодержащих породах.

Водяной пар, содержание которого было высоким, все еще составляет часть оболочки Земли - океаны, покрывающие 71% поверхности Земли. Океаны отличают Землю от всех других планет.

Химизм вод Мирового океана в значительной степени определяется и регулируется живым веществом. Воды Мирового океана, как и атмосфера Земли, образовались за счет дегазации мантии, т.е. Мировой океан образовался из паров мантийного материала и вначале воды были кислые и минерализованы. Пресные воды появились позже в результате испарения с поверхности первичных океанов (процесс естественной дистилляции).

Сильные кислоты в составе ювенильных вод интенсивно разрушали первичные алюмосиликатные породы, извлекая из них щелочные и щелочноземельные металлы: Na, K, Rb, Cs, Mg, Ca, Sr, а также соли двухвалентного железа. Первичная поверхность суши омывалась кислыми дождями, под влиянием которых происходили гидролиз и гидратация первых минералов. При круговороте воды и выносе катионов Na, K, Mg, Ca значительная их часть задерживалась в океане и сейчас являются главными катионами океанической воды. К главным анионам ее относятся  К редким элементам относятся азот, фосфор, кремний, концентрация которых контролируется ростом и размножением живых организмов океана. В морской воде растворены природные газы, тесно связанные с атмосферой и живым веществом моря: азот, кислород, углекислота, сероводород.

Земная кора как верхний слой твердой тела Земли первоначально возникла в результате выплавления материала мантии и в дальнейшем оказалась существенно переработанной в биосфере под влиянием атмосферы, воды и деятельности живых организмов.

Ландшафт первых сухопутных участков был типичный вулканический, подобный современному лунному ландшафту.

Литосфера Земли сформировалась в большей своей части за счет деятельности живого вещества. Это относится к осадочным породам. Известняки, мел, мрамор почти целиком состоят из остатков скелетов организмов.

Почвенный покров сформировался и развивался при активном участии живого вещества.

В самом начале палеозойской эры живое вещество переходит на сушу, формируются наземная флора и фауна. Происходит рост биомассы, усложняется ее качественный состав. Новые виды организмов для построения внутреннего и наружного скелета используют  и др. В результате резко увеличивается воздействие живого вещества на геохимию океана, атмосферы и осадочной оболочки Земли.

Состав атмосферы приближается к современному. Морская вода из хлоридно-карбонатно-сульфатной постепенно превращается в хлоридно-сульфатную.

Литература

1. Хокинг С. Виден ли конец теоретической физики? Природа, 1982, 5


Раздел 2. ЖИЗНЬ От атомов к протожизни. Неорганические и органические соединения и их многообразие

Молекулы находятся в непрерывном движении и сталкиваются друг с другом. Обычно при этом они просто отскакивают в разные стороны, так как их электронные оболочки отталкиваются. Но сильное соударение может вызвать перегруппировку электронов в столкнувшихся молекулах и возникновение нового соединения. Это явление называют химической реакцией. Химия изучает процессы превращения молекул при их взаимодействиях и при воздействиях на них внешних факторов - теплоты, света, электрического тока.

Количество химических реакций и количество молекул не поддаются исчислению. Химия непрерывно создает новые комбинации атомов, новые вещества.

Многие элементы образуют соединения с водородом — гидриды (CH4, NH3, HF, SiH4, H2S, HCl), а также соединения с кислородом — оксиды (CO, CO2, SO, SO2, SiO2, NO, N2O3, NO2, N2O5).

Вода - соединение водорода с кислородом - H2O. Это одно из самых распространенных веществ на Земле. Она обладает совершенно удивительными свойствами, которые настолько важны для живых организмов, что нельзя себе представить жизнь, в том виде как мы ее знаем, на какой бы то ни было планете, если только на этой планете нет достаточного запаса воды.

Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом кислорода ковалентно связан с двумя водородными атомами. Молекула изогнута углом, в вершине угла находится атом кислорода. Молекула полярна: ее кислородный атом несет частичный отрицательный заряд, а каждый из двух атомов водорода - частичный положительный заряд.

Частично отрицательный атом кислорода одной молекулы воды притягивается частично положительными атомами водорода других молекул; поэтому молекулы воды связаны друг с другом водородными связями. В жидком состоянии эти слабые связи быстро образуются и столь же быстро разрушаются при беспорядочных соударениях молекул.

Свойства воды, имеющие важное значение для жизни:


Информация о работе «Концепции современного естествознания»
Раздел: Биология
Количество знаков с пробелами: 451842
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
29368
0
0

... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...

Скачать
157302
0
0

... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...

Скачать
42356
0
0

... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...

Скачать
67452
0
0

... галактик и Вселенной. Материальные системы микро-, макро- и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях ...

0 комментариев


Наверх