1. Сачков Ю.В. Вероятностная революция в естествознании/ Природа, 1991, 5
Тема 3.3. Качественные методы в эволюционных задачах Начала нелинейного мышления. Пространства состояний системы и динамическая модель
Становление науки Нового времени неотделимо от выработки концепции механической причинности и ее абсолютизации в лапласовском детерминизме, который несовместим с идеей развития. Концепция однозначной причинности выражена в афоризме: “Одинаковые причины - одинаковые следствия”. Встречающиеся сплошь и рядом в обычных житейских ситуациях случаи, когда , казалось бы одинаковые причины приводят к разным следствиям, всегда легко и изящно объяснялись ссылкой на неполноту учета всех предшествующих обстоятельств.
Развитие квантовой физики привело к радикальному перевороту в этой области, суть которого заключается в утверждении объективного и фундаментального статуса вероятности и неопределенности.
Основное уравнение квантовой механики - уравнение Шредингера -столь же детерминистично и линейно, как и уравнения классической механики. Но уравнение Шредингера описывает не реальные наблюдаемые величины, а распределение потенциальных возможностей. Переход к реально наблюдаемым величинам связан с редукцией волновой функции, а следовательно, с нарушением однозначной причинности.
Идея однозначной причинности жестко связана с представлением о линейном характере причинных связей (цепей событий). Считалось, что эти линейные цепи причин и следствий простираются неограниченно далеко как в будущее, так и в прошлое. Причина всегда равна своему следствию, а изменение следствия пропорционально изменению причины.
Эти натурфилософские (Ахундов и Баженов, Природа, 1991, 4) представления о линейных цепочках причин и следствий находят в науке выражение в образе линейных систем, процессы в которых описываются линейными дифференциальными уравнениями, - свойства таких систем не меняются при изменении их состояния (принцип суперпозиции).
Мир классической механики был линеаризированным миром, законы которого формулировались на языке линейных дифференциальных уравнений. Эти уравнения служили не только мощным аппаратом исследования, но и теми “очками”, сквозь которые исследователь смотрел на мир.
Но реальная действительность не состоит из абсолютно твердых шаров, катящихся по абсолютно гладким поверхностям. Реальный “биллиард” характеризуется такими нелинейными особенностями, как трение, турбулентность и пр. Для описания реальных объектов вводились различные поправки. Но отступления от линейности рассматривались как незначительные и объяснялись не идеальностью объектов.
Однако в ходе научного познания объектами исследования стали такие явления и процессы, которые проявляют себя не просто как неидеальные, но именно как нелинейные. В XIX веке наука, сталкиваясь с такими объектами, вынуждена была отступать, ибо не было эффективных методов решения нелинейных уравнений. Да и господствовавшая картина мира не стимулировала интерес к изучению подобных объектов. Более того, само их существование могло показаться абсурдным. Например, кому могло прийти в голову исследовать процессы вдали от равновесия и стационарности: если вблизи этого положения исследование имеет смысл и может опираться на испытанные методы линеаризированной физики (плюс необходимы уточнения), то вдали от него такая работа представлялась бессмысленной, ибо задолго до ее завершения объект исследования будет просто разрушен.
Можно представить себе состояние ученых, когда выяснилось, что в этих “катастрофических” областях могут существовать устойчивые динамические структуры. Оказалось, что сугубо нелинейная область хаоса структурно богата и в ней возможны свои космосы (античные термины хаос и космос вновь активно заработали).
Структурная населенность нелинейного мира (хаоса): нелинейные периодические реакции В.П.Белоусова, получила объяснение в рамках неравновесной термодинамики И.Пригожина и синергетики Г.Хакена, а также теории катастроф Р.Тома, благодаря чему удалось совершить прорыв в той области математики, начало которой положено работами А.Пуанкаре прошлого века и была связан с теорией нелинейных уравнений.
Помимо синергетических объектов существуют многочисленные классы нелинейных систем (в оптике, акустике, радиоэлектронике и т.д.), чьи свойства зависят от их состояния.
В классической науке нелинейность характеризовала особый частный класс объектов, а в современной - нелинейность рассматривается как универсальная и фундаментальная черта окружающей реальности. Если коротко охарактеризовать новый класс объектов, то их следует назвать эволюционными объектами. С этими объектами связаны следующие понятия: 1) нелинейность, о которой шла речь выше; 2) самоорганизация, которая означает изменение своей организации под действием внутренних факторов; 3) необратимость времени, которая в классической науке рассматривалась как эмпирически имеющая место досадная черта реальности, причем задача теоретического знания заключалась в разработке приемов, как эту необратимость обойти.
В современных науках, как естественных, так и социогуманитарных, эволюционные процессы во все большей степени выходят на передний край исследований. И хотя в науках социогуманитарного цикла, как и в биологии, идея развития получила широкое выражение уже в прошлом веке, но и здесь радикально новым элементом оказывается идея нелинейности.
Диссипативные системы вдали от равновесия
Диссипативные структуры включают все типы самоорганизации: колебательные процессы, пространственную организацию, пространственно-временное структурирование, а также любую другую последовательность процессов, связанных с когерентными свойствами, наблюдаемыми в системе вне области устойчивости гомогенного состояния (А.Баблоянц, 1990).
Когерентность - согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении.
Для возникновения диссипативных структур необходимы следующие условия:
1. Система должна быть открытой и постоянно обмениваться веществом и энергией с окружающей средой. Это означает, что химические, биохимические и гидродинамические системы должны находиться вдали от равновесия.
2. В системе должны протекать различные каталитические, кросс-каталитические процессы, а также регуляция по типу обратной связи. Такого рода процессы описываются нелинейными дифференциальными уравнениями.
3. После некоторого критического значения параметра системы или какого-либо внешнего воздействия однородное стационарное состояние становится неустойчивым, и тогда ничтожно малое возмущение в окружении системы может вызвать ее переход в новое стационарное состояние, режим которого также соответствует упорядоченному состоянию.
Наиболее важной характеристикой диссипативных структур является то, что они возникают и сохраняются только в неравновесных условиях. Под влиянием флуктуаций отдельные элементы системы кооперируются, обнаруживая при этом такое поведение, которое характеризует систему в целом и которое никак нельзя было бы ожидать или понять на основании свойств отдельных ее элементов.
Диссипативные структуры появляются всякий раз, когда система, способная к самоорганизации за счет своих кооперативных свойств, измеряет время и организует пространство для того, чтобы “выжить” при различных воздействиях, оказанных на нее, или для того, чтобы лучше использовать окружающую среду.
Идея диссипативных структур получила широкое распространение в тех областях знания, из которых она родилась. Особенно возродился интерес к теории нелинейных дифференциальных уравнений. Очень популярными стали математические модели для различных биологических процессов, протекающих в единичных клетках или в многоклеточных ансамблях. В различных химических реакторах было обнаружено много неожиданных типов осциллирующего поведения. В жидкостях были открыты разнообразные неожиданные упорядоченные, квазиколебательные и хаотические состояния.
На основе всех этих наблюдений возникла новая ветвь исследований, названная областью нелинейных явлений, которая стала наиболее многообещающей областью макроскопической физики.
Самоорганизация диссипативных структур может произойти только вдали от состояния термодинамического равновесия.
Когда характеризующие динамическую систему переменные изменяются во времени, они могут быть описаны в виде дифференциальных уравнений. Дифференциальные уравнения приобретают нелинейную форму, как только мы переходим к описанию процессов возможной конкуренции самоорганизации и самодеструкции каких-либо величин.
Можно ожидать, что такие системы буду самопроизвольно проявлять черты кооперативного поведения и различного рода пространственно-временную организацию. Вот почему в последние годы рамки диссипативных структур расширились и захватили даже такие области, как социобиология, социология, социальная экономика и экономическая наука.
Литература... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...
... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...
... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...
... галактик и Вселенной. Материальные системы микро-, макро- и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях ...
0 комментариев